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1. INTRODUCTION

This paper is concerned with the efficiency properties of competition in
a dynamic entry-deterrence framework. Consider a natural monopoly
context, e.g. in which production involves large fixed costs. On the one
hand, efficiency requires that a single firm operates. On the other hand, an
unconstrained monopoly could adopt socially inefficient policies. Hence,
an important issue is the extent to which the mere threat of entry by a
competitor may ‘‘discipline’’ a monopoly and restore some efficiency with-
out duplicating costs. Indeed, potential competition may force the incum-
bent to deviate from its optimal policy and instead adopt entry-preventing

Ž .strategies for surveys see Gilbert, 1989; Wilson, 1992 . Such deviations
reduce the incumbent’s monopoly rent. In infinite horizon models of
dynamic entry deterrence with symmetric firms, the no-entry condition

Ž .takes the form of a simple recursive equation Wilson, 1992 : the incum-
Ž .bent’s optimal entry-preventing policy OEPP is such that its rival’s entry

cost equals the total discounted rent that the latter would earn after
entering; this rent is itself determined by the OEPP that the new incum-
bent would have to follow. A rent dissipation property obtains; the recursive
equation implies that the incumbent’s total discounted rent is bounded so

Žthat the flow profit has to go to zero as discounting decreases Farrell,
.1986 . The implications for efficiency are ambiguous, although, and have

Ž .triggered most past developments Tirole, 1989 .
Yet, an equally important issue is whether the competitive process

selects the most efficient firm. To what extent can a historical incumbent
deter entry by a more efficient competitor? Existing models cannot be
used to tackle this question. They assume symmetric firms, which is key to
formulating the rent dissipation argument. Despite their elegant simplicity,
the direct technical extension of these approaches to asymmetric situations

Ž .is not compelling. Eaton and Lipsey’s 1980 ’s argument relies on an
intuitive, rational expectations reasoning which loses its bite with asym-

Ž .metric firms. Maskin and Tirole’s 1988 ’s Markov equilibrium approach
can lead to counterintuitive results; if the initial incumbent is the less
efficient firm, it maintains indefinitely and earns the same rent as a more

Ž .efficient firm would Lahmandi-Ayed et al., 1996 . Finally, Ponssard’s
Ž .1991 ’s forward induction approach would require further refinements to
handle the asymmetric case. To address this question, we thus resort to a
finite horizon framework encompassing and extending the existing models.
It builds on a finite series of Stackelberg stage games in which the leader’s
policy affects both its profit and its rival’s entry cost. In dynamic settings,
firms compete not only for the current demand but also for future
incumbency and Stackelberg leadership. This is captured, under a reduced
form, by endogenizing leadership; leadership in the next period’s Stackel-
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berg game rests with the current period’s incumbent unless entry occurs, in
which case it accrues to the successful entrant. Finally, the logic of
entry-barriers is the same as for symmetric games; in each stage, the
incumbent’s OEPP sets the rival’s entry cost at the level of the future rent
its rival would earn if it entered, became the new incumbent, and had to
follow its own OEPP.

The paper’s central point is that the selection property of asymmetric
games is the relevant economic extension to the rent dissipation property in
symmetric ones, as well as its natural implication. The intuition is as
follows. In the symmetric case, the incumbent’s flow profit is driven down
to zero by potential competition. In the asymmetric case, one firm has both
a larger stage payoff for a given policy and a lower entry cost against a
given policy. Under some sufficient assumptions on these functions, which
we discuss, the less efficient firm’s OEPP is more constrained than that of
the more efficient one. Hence, its flow profit would have to be negative in
the short-run so as to secure the positive incumbency rent earned in later
stages. With a long horizon and low discounting, however, the losses
accumulate to finally offset the future rent. Hence, the less efficient firm is
better off exiting than preventing entry.

Although this analysis relies on a backward induction reasoning, it can
be extended to some infinite horizon situations. As an illustration, a
variant of the basic dynamic entry game is introduced in which firms are
asymmetric during a finite phase, and then are symmetric forever. A
similar selection property obtains. The analysis of this game is fruitful not
only because it deals with a situation of economic relevance in which

Ž .competitive dis advantages are only temporary. It also clarifies the role of
our sufficient assumptions, providing an example in which the selection
property holds under milder conditions.

Dynamic symmetric entry games play a central role in the discussion of
Ž .contestability issues Baumol et al., 1982; Fudenberg and Tirole, 1987 .

The introduction of asymmetry significantly contributes to this debate as it
allows us to analyze the competition process not only as a disciplinary
mechanism but as a selection device. The selection property requires more
stringent conditions than the rent dissipation property. This is illustrated

Ž .by means of three examples adapted from Ponssard 1991 , Maskin and
Ž . Ž .Tirole 1988 , and Eaton and Lipsey 1980 , in which entry is deterred

through prices, capacities, and plant renewals. These examples also show
that whether the selection property holds is bound to depend on the type
of strategic variable considered.

The paper is organized as follows. The general framework is introduced
in Section 2 and the main results are derived in Section 3. Section 4
applies this framework to the three examples. Section 5 concludes.
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2. THE MODEL

We propose a model of dynamic competition between two firms in a
natural monopoly context. In static Stackelberg entry games, the leader’s
policy tries to prevent entry by rivals in order to monopolize the demand.
In dynamic entry games, the firms compete not just for the current
demand but for future Stackelberg leadership as well, so as to monopolize
future demand. Our model captures this double competition for demand
and leadership in a reduced form. It is an extensive-form game of perfect
information, consisting of a finite sequence of Stackelberg stage-games in
which leadership is determined endogenously; leadership in the next
period’s Stackelberg game rests with the current period’s incumbent unless
entry occurs, in which case it accrues to the successful entrant. The game
is diagrammed in Fig. 1.

� 4There are two firms indexed by i g 1, 2 . We consider games with a
finite number of stages, N. For convenience, the stages are labelled

Ž .backwards: N is played first, then stage N y 1 etc. In each stage, one
firm is the leader. In the first stage, the leader is exogenous. In the other

Ž . Ž .stages, it is determined endogenously see below . We denote by G i theN
N-stage game in which firm i is the initial leader.

Suppose that firm 1 is the leader in stage n; it can choose to play ‘‘In’’ or
‘‘Out.’’ If firm 1 chooses ‘‘In,’’ both firms play the following Stackelberg

Ž . Ž .game, G 1 see below . If firm 1 chooses ‘‘Out,’’ then firm 2 can choose
Ž .between ‘‘In’’ and ‘‘Out.’’ If it chooses ‘‘In’’ the firms play G 2 . If both

firms choose ‘‘Out,’’ they receive a payoff of zero in this stage and all
remaining stages.

Ž .Game G i is played as follows. First, firm i chooses a policy x g X,i
Ž .where X is an interval in R. Second, firm j with j / i chooses a policy

� 4x g Out, In . The payoffs ¨ and ¨ are as follows:j i j

¨ x if x s OutŽ .i i j
¨ x , x sŽ .i i j ½ d x - 0 if x s In;Ž .i i j

0 if x s Outj
¨ x , x sŽ .j i j ½ yC x if x s In.Ž .j i j

Ž .If G i has been played in stage n, the leader in the next stage, i.e. stage
Ž .n y 1 , is

firm i if x s Outj

firm j if x s In.j
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FIGURE 1
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Each firm’s total payoff in the game is the sum of all its stage payoffs. We
derive all our results in this no-discounting setting. They must be inter-
preted as limit results for low discounting.1

These rules capture in a reduced form the features of competition for
leadership underlying most existing models of entry deterrence. To focus
the discussion, let us compare it to Maskin and Tirole’s framework. In
static models, two attributes characterize the Stackelberg leader. First,
when the leader moves, its rival has not committed to a policy. Second,
when its rival moves, the leader has already committed to a policy. By
analogy, a Stackelberg leader in Maskin and Tirole’s rigid timing structure
is a firm which either does not face any commitment by its rival at its
decision date, or it has already imposed its own capacity commitment when
the latter has to move. How does leadership change hands? Although the
follower faces a commitment by the leader, it must invest aggressively
when called to move, so as to deter its opponent from counterinvesting at
its next decision date. Then, when the current follower will move again, it
will not face any commitment and will have become de facto leader. In this

Ž .process, both firms share the market for at least one period with low
price and profits, as a result of the follower setting up a large capacity to
deter future entry. The current leader certainly loses money in the over-
lapping period. The industry profits can be depressed enough so that the
follower loses money over its initial two-period commitment. It takes an
entry cost to acquire leadership and future incumbency. As for the current
leader, should it forego an investment opportunity, it will move two periods
later. However, at this time, it will have become the follower, i.e. if its rival
has invested in the meantime.

Our model accounts for a similar leadership contest story, yet condenses
it within one stage. The leader at the outset of the period, firm i, can

Ž .commit to a policy x e.g., price, quantity . If it operates as a monopoly,i
i.e. if firm j chooses not to counterinvest and plays ‘‘Out,’’ firm i then

Ž .earns a monopoly stage payoff ¨ x . Otherwise, if firm j decides toi i
challenge firm i’s leadership and enters, firm i makes a nonpositive profit
Ž .d x in this stage. As to firm j, it faces firm i’s short-term commitment xi i i

Ž .which affects its payoff in this leadership transfer phase; C x is the entryj i
cost for firm j against x , i.e. the losses that the follower has to incur toi

1In dynamic models, continuity at d s 1 of both the policies and the payoffs is generally
Žproblematic, as is the choice of an appropriate criterion in the undiscounted case see Dutta,

.1991, for a general theory . In our setting, the problem is much more trivial. We mostly deal
with finite horizon problems, in which policies and payoffs can be shown to be continuous in
the discount factor, including at d s 1, by a simple induction argument. We deal with infinite

Ž .horizon only in the case of symmetric firms Section 3.1 and explicitly state an equivalence
result between the limit of the discounted case and the undiscounted case. The continuity
result is directly provided by the key recursive equation.
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� Ž .4 Ž .enter. It is a reduced form for min C x ; x , where X x is thex g X Ž x . j i j ij i

set of actions that allow firm j to enter against x .i
The following assumptions are made.

Assumption AA. The functions ¨ , ¨ , C , and C are continuous on X.1 2 1 2

Assumption BB. The functions ¨ and ¨ are strictly increasing on X.1 2

Assumption CC. The functions C and C are strictly decreasing on X.1 2

Ž . Ž .Assumption DD. The functions C q ¨ and C q ¨ are nonincreas-1 1 2 2
ing on X.

Assumption AA involves no loss of generality. Assumptions BB and CC

capture the idea that in order to build an entry barrier, the incumbent has
to deviate from the policy of an unconstrained monopolist. Moreover, the
higher the barrier, the greater the deviation and so the smaller the
incumbent’s profit. Consider, for instance, x as a price. The set X is thei
set of prices below the unconstrained monopoly price. Hence, the incum-
bent’s profit is increasing in the price it charges. Conversely, since an
entrant has to undercut the incumbent’s price to enter, the lower this
price, the lower the entrant’s short-term profit, i.e. the larger the entry
cost. Assumption DD formalizes a very distinct property of our model; to
raise its rival’s entry cost by one unit, the incumbent has to reduce its own
profit by less than one unit. In the subsequent analysis, this property is
shown to be a sufficient condition for both the rent dissipation and the
selection results.2

Note that only the functions ‘‘relative monotonicities’’ matter. In some
contexts, such as quantity competition, it is innocuous but more elegant to

Ž .assume the opposite monotonicities, i.e. ¨ decreasing and C and C q ¨i i i i
Ž .increasing on X see Section 4.2 .

3. THE MAIN RESULTS

The analysis is in two steps. First, we study the case of symmetric firms
which have the same functions ¨ and C. Then, we examine a class of
asymmetric entry games in which firms differ in their monopoly payoffs ¨ i
and entry costs C .i

3.1. Symmetric Firms

In the case of symmetric firms, ¨ s ¨ s ¨ and C s C s C. Define x l
1 2 1 2

by
¨ x l s 0.Ž .

2 However, as will be illustrated by some counterexamples, it is not a necessary condition.
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The policy x l allows the firm operating as a monopoly to just break even.
If the strategic variables are prices, x l is the monopolist’s ‘‘average cost
pricing’’ policy. Define x L by

C x L s 0.Ž .

The policy x L is the largest x g X which, in the one-stage game, makes
entry nonprofitable. Hence, by Assumption BB, x L is the optimal entry-
preventing policy in a one-stage game. In terms of prices, x L is the ‘‘static
limit pricing’’ policy.

In what follows, we assume that x l and x L exist and satisfy x l - x L.
Ž .This ensures that in the only perfect equilibrium of G i , firm i plays ‘‘In’’1

Ž Ž . . L 3i.e., G i is played and x , and then firm j plays ‘‘Out.’’
Ž .In the N-stage game G i , entry is deterred by a dynamic entry-prevent-N

ing policy that is a sequence of policies deterring entry in each stage of the
game. The same firm maintains throughout the game. Its OEPP
� N Ny1 14x , x , . . . , x is defined as the solution to

x1 s x L

1Ž .nq1 n kC x s Ý ¨ x for n s 1, . . . , N y 1.Ž . Ž .ks1

This definition extends the notion of a static entry barrier to a dynamic
framework. In each stage, a firm’s OEPP sets its rival’s entry cost equal to
the total incumbency rent that the latter would earn as the incumbent in
subsequent stages. This rent itself is determined by the OEPP that the new
incumbent would have to follow. The OEPP is thus determined by dynamic
programming. Observe that an equivalent recursive equation for the
OEPP is

x1 s x L

2Ž .nq1 n nC x s C x q ¨ x for n s 1, . . . , N y 1.Ž . Ž . Ž .

PROPOSITION 1. In the unique perfect equilibrium of any symmetric entry
Ž . � 4game G i , with i g 1, 2 , firm i maintains with the OEPPN

� N Ny1 14x , x , . . . , x .

� n4Proof. We first prove by induction that the sequence x is wellng N*
defined, is decreasing, and satisfies x l F x n F x L.

3The assumption that x l and x L exist is only a matter of simplicity and is innocuous. We
l � Ž . 4 L � Ž . 4could use the more general definitions x s min x N ¨ x G 0 and x s max x N C x F 0 .

The assumption that x l - x L is common to all static entry games; i.e., absent this assump-
tion, entry barriers are impossible.
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1 L l 2 Ž 2 . ŽStep 1. x s x ) x by assumption. x is defined by C x s C q
.Ž 1.¨ x . Then,

C x l s C q ¨ x l G C q ¨ x1 s C x 2 G C x1 s C x L .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

By the theorem of intermediate values, x 2 exists; it is unique by Assump-
tion CC and satisfies x l F x 2 F x1 F x L.

Step n q 1. Suppose that until rank n, the OEPP exists, is unique,
and satisfies

x l F x n F x ny1 F x L .

Then

C x L F C x n s C q ¨ x ny1 F C q ¨ x nŽ . Ž . Ž . Ž . Ž . Ž .
F C q ¨ x l s C x lŽ . Ž . Ž .

Ž .Ž n. Ž nq1.which, given that C q ¨ x s C x , can be written

C x L F C x n F C x nq1 F C x l .Ž . Ž . Ž . Ž .

As in Step 1, x nq1 exists, is unique, and satisfies x l F x nq1 F x n F x L.
Ž .We now prove by induction on N that G i admits a unique perfectN

equilibrium in which firm i maintains as incumbent with the OEPP
� N Ny1 14 N Ž n.x , x , . . . , x and therefore earns a total rent Ý ¨ x . The induc-ns1
tion hypothesis is clearly satisfied for N s 1. Suppose that it holds until

Ž . Ž .rank N and consider stage N q 1 in G i .Nq1
Suppose that firm i plays ‘‘In’’ and x F x Nq1. If firm j plays ‘‘In,’’ itsi

Ž . N Ž n.payoff is yC x q Ý ¨ x F 0. Hence, firm j plays ‘‘Out’’ and firmi ns1
Ž . N Ž n. Nq1i’s payoff is then ¨ x q Ý ¨ x . Note that, for x F x , this payoffi ns1 i

Nq1 Ž Nq1.is maximized at x and that ¨ x ) 0.
Suppose that firm i plays ‘‘In’’ and x ) x Nq1. Firm j enters because itsi

Ž . N Ž n. Ž .total profit is then yC x q Ý ¨ x ) 0. Firm i’s payoff is d x - 0.i ns1 i i
Conditionally on playing ‘‘In,’’ firm i’s best strategy is to choose x Nq1

and maintain.
Ž .Suppose that firm i plays ‘‘Out.’’ Then G j is played and, by the

previous argument, firm j plays ‘‘In’’ and x Nq1 and its OEPP. It earns
Ž Nq1. N Ž n.¨ x q Ý ¨ x ) 0. It will thus, indeed, play ‘‘In’’ and firm i willns1

earn 0.
Comparing the three options, firm i’s optimal choice is ‘‘In’’ and x Nq1.

B

COROLLARY 1. As the number of remaining stages goes to infinity, the
incumbent’s stage payoff goes to zero, i.e. lim x n s x l.nªq`
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� n4Proof. Since the sequence x is decreasing and bounded, itng N*
Ž . � n4 Ž .converges. From system 2 , the limit x of x has to satisfy C x sng N*

Ž . Ž . Ž . Ž .C x q ¨ x , because C and C q ¨ are continuous. Hence, ¨ x s 0, i.e.,
x s x l. B

Corollary 1 shows that our finite horizon model is consistent with the
infinite horizon models found in the literature. More precisely, the infinite

Ž .horizon models Eaton and Lipsey, 1980; Maskin and Tirole, 1988 gener-
ate a stationary OEPP for each value of the discounting factor. As the

Ž .discounting factor goes to 1 i.e., when cash flows are less discounted , the
OEPP converges towards the policy such that stage payoffs equal zero.
This constitutes the celebrated rent dissipation property. In our approach, in
which the discounting factor is directly assumed to equal 1, the same policy
obtains as the limit when the horizon goes to infinity.4 The flow profit and
therefore the average rent converge to zero. Note, however, that the total
rent does not.

Ž l.COROLLARY 2. The incumbent’s rent con¨erges to C x . That is,

N
n llim ¨ x s C x ) 0.Ž . Ž .Ý

Nª` ns1

Ž . N Ž n. Ž Nq1.Proof. The incumbent’s rent in G i is Ý ¨ x s C x whichN ns1

Ž l. l L Ž l.converges to C x as N goes to infinity. x - x implies that C x ) 0.
B

Notice that in some models the function ¨ may not satisfy Assumption
Ž .BB on the entire range of values of x see Section 4.2 for an example .

Moreover, it may be that x M, the optimal policy of an unconstrained
monopoly, actually deters entry in the one-stage game. That is, the threat
of entry does not constrain the monopolist’s policy choice in the one-stage
game. The incumbent’s OEPP may be stationary at x M for short horizon
games, but policies are constrained for longer horizons and the same
monotonic convergence result is obtained when the horizon goes to
infinity.

4 The convergence towards the solution of infinite horizon models is not due to the
no-discounting assumption. It can be shown that for any discounting factor, the OEPP
obtained in our finite horizon model converges to the stationary OEPP obtained in infinite
horizon models. Indeed, in our approach, the limit of the OEPP has to solve a recursive
equation which is precisely the fundamental recursive equation common to all infinite
horizon models.
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3.2. Asymmetric firms

Consider now the case of two firms with respective efficiency levels S
Žand W. Relative efficiency is captured by the following assumption per-

.taining to functions .

Assumption EE. ¨ - ¨ and C G C .W S W S

Assumption EE states that for a given policy, the stage payoff of a strong
firm is strictly greater than that of a weak firm. Furthermore, the entry cost
against a given policy is smaller for a strong than for a weak firm.

Ž l l . Ž L L.Define x , x and x , x byW S W S

¨ x l s 0, ¨ x l s 0,Ž . Ž .W W S S

C x L s 0, C x L s 0.Ž . Ž .W S S W

Assumption EE implies

x l - x l .S W

Indeed, the strong firm makes positive profits for policies that do not allow
the weak one to break even. Moreover,

x L F x L .W S

That is, preventing entry by the more efficient firm in the one-stage game
Ž .requires a weakly more ‘‘aggressive’’ policy than preventing entry by the

less efficient firm. Assuming x l - x L , the weak firm can profitably pre-W W
Ž . Lvent entry in G W with x . We prove, however, that the weak firm is1 W

Ž .unable to maintain indefinitely in G W , with N large enough.N
When firms are unequally efficient, their OEPPs differ in each stage.

Ž . 5The system which extends system 1 derived in the symmetric case is

x1 s x L
W W

1 Lx s xS S
3Ž .nq1 n kC x s Ý ¨ x for n s 1, . . . , N y 1Ž . Ž .W S ks1 W W

nq1 n kC x s Ý ¨ x for n s 1, . . . , N y 1.Ž . Ž .S W ks1 S S

5This system is equivalent to the recursive system

x1 s x L
W W

1 Lx s xS S

nq1 n nC x s C x q ¨ x for n s 1, . . . , N y 1Ž . Ž .Ž .W S W S W W

nq1 n nC x s C x q ¨ x for n s 1, . . . , N y 1.Ž . Ž .Ž .S W S W S S
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� n4 � n 4It is expected that, when defined, x and x correspond toS nF N W nF N
Ž .the respective OEPPs of the strong and the weak firms in G S andN

Ž . N Ž n .G W . Indeed, it easy to show, as in Proposition 1, that if Ý ¨ x GN ns1 W W
N Ž n. � 4 Ž .0 then Ý ¨ x G 0 and for i g W ,S , G i has a unique perfectns1 S S N

� N 14equilibrium in which firm i maintains using the OEPP x , . . . , x . How-i i
ever, this does not hold for N large as we explain below.

� n 4LEMMA 1. Let y be the OEPP in the symmetric case with twoW ng N*
weak firms. For all n for which x n and x n are defined, the followingW S
inequalities hold: x n F y n F x n.W W S

Proof. By induction.

Step 1. By definition, x1 s x L F x L s y1 s x1 .W W S W S

Step n q 1. Suppose x k F y k F x k, ;k F n:W W S

n n
nq1 k k nq1C x s ¨ x F ¨ y s C y .Ž . Ž . Ž . Ž .Ý ÝW S W W W W W W

ks1 ks1

Hence, x nq1 G y nq1. Moreover,S W

n n n
nq1 k k kC x s ¨ x G ¨ y ) ¨ yŽ . Ž . Ž . Ž .Ý Ý ÝS W S S S W W W

ks1 ks1 ks1

) C y nq1 G C y nq1Ž . Ž .W W S W

which implies x nq1 - y nq1. BW W

LEMMA 2. 'M g N* such that

Ž . n Ž k .i either Ý ¨ x - 0ks1 W W

Ž . nii or x is not definedW

if and only if n G M.

� n 1 4 n Ž k .Proof. First, note that if x , . . . , x is defined and Ý ¨ x G 0W W ks1 W W
nq1 Ž L. n Ž k . nthen x is defined. Indeed, C x s 0 F Ý ¨ x F ÝS W S ks1 W W ks1

Ž k . Ž n . nq1 Ž nq1. n Ž k .¨ y s C y and so x , defined by C x s Ý ¨ x ,W W W W S W S ks1 W W
exists by the theorem of intermediate values.

Ž . nLet M be the first rank possibly infinite at which x is not defined,0 W
� ny1 Ž k . Ž .4i.e., M s max n N Ý ¨ x F max C x .0 ks1 S S x g X S WW

Ž .i First, consider the case M s q`. Let us define M - M by0 0
� n Ž k . 4M s min n N Ý ¨ x - 0 and show that M is finite. By Lemma 1,ks1 W W

n Ž k . n Ž k . Ž l . Ž l . Ž l .Ý ¨ x G Ý ¨ y G n ? ¨ x . Since ¨ x ) ¨ x s 0,ks1 S S ks1 S W S W S W W W
n0 Ž k . Ž l .there exists n such that Ý ¨ x ) C x . Hence, for n ) n ,0 ks1 S S S W 0
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nq1 n l n Ž k . n0 Ž k .x - x - x . Hence, for n ) n , Ý ¨ x - Ý ¨ x qW W W 0 ks1 W W ks1 W W
Ž . Ž n0q1 .n y n ? ¨ ¨ which decreases towards y`.0 W W

Ž .ii Consider now the case M - q`.0

M0y1 Ž k .If Ý ¨ x G 0 then M s M .ks1 W W 0
M0 Ž k . �If Ý ¨ x - 0, we can define M - M by M s min n Nks1 W W 0

n Ž k . 4Ý ¨ x - 0 . Bks1 W W

If the horizon is short enough, the weak firm can maintain and make
positive profits in all stages. For longer horizons, in order to maintain, the
weak firm has to incur negative profits in early stages, which are compen-
sated by the positive profits in later stages. Lemma 2 states that for

Ž .horizons long enough, one of two circumstances arises first: i either the
weak firm is able but unwilling to deter entry because the losses that it
would have to incur outweigh the positive rent it would eventually earn, or
Ž .ii the strong firm’s incumbency rent is so high that the weak firm is
unable to deter entry. In such games, despite being the initial leader, the
weak firm is better off exiting the market. The strong firm enters and
maintains in the long run. This leads directly to the selection property,
which is the paper’s central result.

PROPOSITION 2. In the unique perfect equilibrium of any asymmetric entry
Ž .game G W with N G M, the weak firm exits and remains out after at mostN

Ž .M y 1 stages.

Proof. The weak firm can profitably maintain as the incumbent in
Ž . Ž . Ž .G W but not in G W . In G W , its first move is ‘‘Out.’’ Then,My 1 M M

Ž . Ž .G W is played as G S and the strong firm maintains with the OEPPM M
� M 1 4x , . . . , x .S S

Consider now a game of length N ) M and let N s Q ? M q R, with
Ž .R - M. In terms of its subgame perfect equilibria, the game G i can beN

Ž .analyzed as an introductory game G i followed by Q independent gamesR
Ž .G S . Indeed, since the termination subgame is in any case played asM
Ž . Ž . Ž . Ž .G S , G i is actually played as G i , followed by G S . By the sameM 2 M M M

Ž .argument used for the M-period endgame, one shows that G i , the firstM
Ž . Ž . Ž .M-period game of G i is played as G S independently of i. G i is2 M M 2 M
Ž . Ž .therefore played as G S , that is, two independent G S in a row. By2 M M

Ž . Ž .the same token, one gets that G i is played as G i , followed by QN R
Ž .independent G S . BM

Some comments are in order. First, this solution naturally extends that
of static entry games. If the asymmetry is very large, x l ) x L and theW W

Ž . Ž .weak firm cannot deter entry even in a one-stage game. G W and G SN N
have the same perfect equilibrium outcome; the strong firm is in the
market and follows its static entry-preventing policy x L in each stage. ThatS
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is, an N-stage game is played as a sequence of independent one-shot entry
games. With smaller asymmetries, the weak incumbent can maintain in
short games. However, it eventually has to give up incumbency in longer

Ž .games, except for an introductory phase of less than M stages . Once the
weak firm has exited, such games are played as a sequence of independent

Ž .games G S , in each of which the strong firm maintains using its OEPPM
� M 1 4x , . . . , x . That is, once the strong firm is in the market, it follows aS S
cyclical OEPP. By backward induction, this complete information game is
played as a sequence of independent games. During the R first stages, the

Ž .weak incumbent deters entry just as in G W , anticipating that in stageR
Q ? M the strong firm will enter. Conversely, the strong firm is certain to
enter in stage Q ? M. Its prize for entering earlier would thus merely be
incumbency in some of the R first stages. By definition of the weak firm’s
OEPP, the prize is not worth the entry cost.6

Second, the firms’ average equilibrium profits reflect their relative
efficiency. Since the weak firm cannot maintain in more than a given
Ž .finite number of stages, its average profit converges to zero when the
horizon goes to infinity. Instead, the strong firm’s average profit converges

Ž . M Ž k .to 1rM Ý ¨ x ) 0.ks1 S S
Finally, as the efficiency differential goes to zero,7 the solution of the

asymmetric case converges to that of the symmetric case. The convergence
� n 4 � n4holds pointwise for any term of the sequences x , x :W ng N* S ng N*

lim x n s lim x n s y n, by continuity of the solutions to systemW ª S W W ª S S S
Ž . �3 . It is then straightforward to establish by contradiction that M s min n

n Ž k . 4g N : Ý ¨ x - 0 ª q` when W ª S. In the limit, the weak firmks1 W W
has become as efficient as the strong one and can maintain over games of
arbitrarily long horizons.

3.3. An Extension with Infinite Horizon

The analysis of competition between asymmetric firms cannot be ex-
tended directly to an infinite horizon setting. In the finite horizon game,
the strong firm’s OEPP is cyclical; such a policy does not converge when
the length of the game goes to infinity. Yet, in many situations of economic
relevance, efficiency asymmetries between firms are only temporary. This
is the case, for example, when the efficiency advantage comes from a
patented innovation; when the patent expires, all firms in the industry can
use the most efficient technology. Such situations can be analyzed through
a simple extension of our basic model. Moreover, a similar issue of

6 Note that this would not be the case with multiple strong entrants because these would
enter as early as possible so as to preempt the market.

7Formally, the functions ¨ , C , and d converge uniformly to the functions ¨ , C andW W W S S
d on X.S
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selection can be raised: to what extent can an inefficient incumbent
maintain in the expectation of catching up later?

Consider the following infinite horizon game. In the first N stages
Ž .stages N, N y 1, . . . , 1 , the firms are asymmetric with respective effi-
ciencies S and W. This phase is followed by an infinite horizon endgame
Ž .stages 0, y1, y2, . . . in which both firms have the same efficiency level

`Ž .S. The whole game is denoted G i , where firm i is the incumbent inN
stage N. In the symmetric endgame, the incumbent maintains indefinitely

l Ž l .with its limit OEPP x and earns a cumulative incumbency rent C xS S S
Ž . � N 1 4 � N 1 4see Corollaries 1 and 2 . Let x , . . . , x and x , . . . , x be theW W S S
respective OEPPs of the weak and the strong firms during the asymmetric

`Ž . `Ž .phase of G W and G S . These are determined along the lines exposedN N
in 3.2, except that the incumbent in the symmetric endgame earns a rent

Ž l . Ž .C x . Accordingly, the system extending system 3 isS S

C x1 s C x lŽ . Ž .W W S S

1 lC x s C xŽ . Ž .S S S S
4Ž .nq1 n k lC x s Ý ¨ x q C x for n s 1, . . . , N y 1Ž . Ž . Ž .W S ks1 W W S S

nq1 n k lC x s Ý ¨ x q C x for n s 1, . . . , N y 1.Ž . Ž . Ž .S W ks1 S S S S

LEMMA 3. For all n G 0 for which x n and x n are defined, the followingW S
inequalities hold: x n F x l F x n.W S S

Proof. By induction.

Step 0. x 0 s x 0 s x l by assumption.W S S

Step n q 1. Suppose that the inequalities hold until rank n:
n

nq1 k lC x s ¨ x q C xŽ . Ž . Ž .ÝW S W W S S
ks1

n
k l- ¨ x q C xŽ . Ž .Ý S W S S

ks1

- C x l F C x l ,Ž . Ž .S S W S

where we used respectively ¨ - ¨ , the inequalities hold until rank n,W S
Ž k .which ensure that each term ¨ x is negative, and C F C . It followsS W S W

that x nq1 G x l . Similarly,S S

n
nq1 k l lC x s ¨ x q C x G C x .Ž . Ž . Ž . Ž .ÝS W S S S S S S

ks1

Hence x nq1 F x l . BW S
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PROPOSITION 3. There exists a maximal number of stages N such that, in
` Ž .the unique perfect equilibrium of G W , the weak firm maintains perma-Ny1

nently.

Proof. Lemma 3 implies that during the asymmetric phase, in each
stage in which the weak firm is active, its stage payoff is strictly negative:

Ž k . Ž l . Ž l .¨ x F ¨ x - ¨ x s 0. As in Lemma 2, there exists a smallest NW W W S S S
such that either its OEPP is undefined or its total incumbency rent in

`Ž . � N 1 4G W earned with its OEPP x , . . . , x becomes strictly negative:N W W
N Ž k . Ž l . Ny1 Ž k . Ž l .Ý ¨ x q C x - 0 F Ý ¨ x q C x . As in Propositionks1 W W S S ks1 W W S S

`Ž .2, only the strong firm can be incumbent in G i , independently ofN
whether i s W or S. B

Besides its providing a framework to handle some infinite horizon
problems, the analysis of G` sheds light on the role of Assumptions AAN
to DD.

First, the different approaches quoted in this paper predict that in
symmetric infinite horizon situations the same firm maintains ‘‘forever’’
and the rent dissipation property holds, with or without Assumption DD.

� n4Second, Assumption DD ensures that in G , the sequence x con-N ng N*
verges towards x l. As a consequence of Assumptions EE, one establishes

Ž n . Ž n.the existence of an n such that ¨ x - 0 - ¨ x . Considering systemW W S S
Ž . n93 , it is straightforward to prove by induction that for n9 ) n, when x isW

Ž n9 . Ž n . Ž n. Ž n9.defined, ¨ x - ¨ x - 0 - ¨ x - ¨ x . That is, consider aW W W W S S S S
game of given horizon and suppose that the weak firm must lose money in
the early stages to maintain in later ones. Then, in a game with a longer
horizon, the weak firm must lose strictly more money to remain the
incumbent.

`Ž .In G W , the selection result derives from the same mechanism, exceptN
that the weak incumbent would lose money even within a single period of

`Ž .asymmetry. In G W , the weak incumbent has to deter the entry of a1
Ž l .strong firm aiming at an incumbency rent C x earned in the symmetricS S

endgame. This means charging x l which is below the weak incumbent’sS
average cost policy. It could be worth making a bounded loss so as to be

Ž l .the incumbent when the symmetric endgame starts and earn a rent C x .S S
Yet, with long phases of asymmetry, such losses would accumulate and
eventually outweigh the rent, making entry prevention unprofitable or
impossible for the weak firm. Here, Assumption DD is not necessary to find
the existence of a minimal duration of asymmetry such that the weak
incumbent is forced to lose money to preserve incumbency.8

8Observe that N and M as determined in Proposition 2 have no obvious connections; they
are derived from identical recursive systems but with different starting points.
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4. THREE EXAMPLES

This section illustrates how ¨ and C are constructed in specific eco-
nomic contexts. It emphasizes the selection result in three models}price
competition with almost homogeneous products, quantity competition, and
the renewal of productive capacities}which have been previously ana-
lyzed in the rent dissipation perspective only. In each of them, firms differ
in their fixed costs. Assumption EE is straightforward to check. Assumption
DD, which is central to our analysis of the rent dissipation and selection
results, is given particular attention.

4.1. Limit Pricing

Ž .This first example is a direct adaptation of Ponssard 1991 to a sequen-
tial move setting.9 The stage games are based on a model of price
competition with almost homogenous products. Let p denote firm i’si
price. When p and p are close enough and not too high, both firms are1 2
active and the duopoly demand function for firm i is

dd p , p s 1 q v 1 y p q v p y p r 1 q 2v with i / j.Ž . Ž . Ž . Ž .Ž .i i j i j i

If by contrast the price differential is large, the firm with the lowest
price has a monopoly demand:

dm p s 1 y p .Ž .i i i

These definitions generate a piecewise continuous, kinked demand curve.
With v large enough, the demand goes entirely to the low price firm,
except for very small price differences. The natural monopoly structure of
the market pertains to the existence of fixed costs, F and F , incurred in1 2
case of production. The monopoly flow profit is

¨ p s 1 y p p y F .Ž . Ž .i i i i i

1w xThis is an increasing function of p g 0, .i 2

With large enough fixed costs and a large enough v, the Stackelberg
Ž .one-stage game has the first mover the incumbent cornering the market

with a limit-pricing policy. Leadership and incumbency refer here to an
idea of consumers’ switching costs. To steal the consumers from the
current incumbent and become leader in the next period, the entrant has
to undercut its rival by a strict margin depending on the price charged by

9 For detailed calculations, which are omitted here, the reader is referred to Ponssard
Ž .1991 . Ponssard analyzes the simultaneous moves version of this game. He finds two
continuums of equilibria, depending on which firm is incumbent. A criterion based on
forward induction selects the two Stackelberg equilibria. The criterion, however, does not
trivially extend to asymmetric games.
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the incumbent. Precisely, the price p minimizing firm j’s entry costj
against p isi

p p s 1 q v p y 1 rv ,Ž . Ž .Ž .j i i

and the corresponding entry cost is

C p s F y 1 q v 1 y p 1 q v p y 1 rv 2 .Ž . Ž . Ž . Ž .Ž .j i j i i

1w xFor v large enough, C is decreasing on 0, . Moreover, Assumption EEj 2

holds. In the case of symmetric firms, we have

¨ q C p s 1 q 2v 1 y p 1 q v r 1 q 2v y p rv 2 ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .

Ž .¨ q C is decreasing, and Assumption DD holds. With v large enough,
the rent dissipation and selection properties are therefore obtained.10

4.2. Capacity as an Entry Barrier

Quantity competition is a most natural setting to investigate issues of
entry-deterrence. Interpreted as a capacity, a quantity has the value of a

Ž .credible commitment to an entry-preventing behavior Dixit, 1979 . In the
simplest version, firms compete a la Cournot, with a linear demand. Firm`

Ž .i’s profit stage payoffs is a function of its capacity decision, k , as well asi
its rival’s, k :j

s k 1 y k y k y F if k ) 0Ž .i i j i i¨ k , kŽ .i i j ½ s 0 if k s 0.i

The market is assumed to have a natural monopoly structure due to large
fixed costs of production, F and F . As a firm’s revenue is necessarily1 2

1 Žsmaller than the unconstrained monopoly profit corresponding to a4
1 1. Ž . Ž .quantity we assume that max F , F - - F q F so that, in equi-1 2 1 22 4

librium, only one firm produces in each stage.
Maskin and Tirole analyze an infinite horizon, dynamic version of a

similar game with symmetric firms. In their model, the two firms move in
alternance and their decisions commit them for two periods. Investigating
the Markov perfect equilibria of this game, in which each firm reacts only
to its rival’s last move, they prove that the rent dissipation property

Žobtains: the equilibrium strategies are trigger strategies the firm produc-
.ing nothing or a large quantity depending on its rival’s last move and the

10 Ž .v large with respect to the fixed costs is needed to ensure that the two firms cannot
profitably share the market. Also, with v small, each firm has a limited market power. As a
result, the incumbent might be better off accommodating rather than deterring entry.
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trigger quantity converges to the average cost policy as discounting de-
creases.

However, the same Markov equilibrium approach used for asymmetric
Ž .firms does not lead to the selection property Lahmandi-Ayed et al., 1996 .

Instead, the less efficient firm maintains indefinitely and, furthermore,
earns the same total incumbency rent as the most efficient firm would;
while its production cost is greater, its equilibrium trigger quantity is
smaller than that of the efficient firm. This result is counterintuitive
because the less efficient firm’s OEPP is less constrained than that of the
more efficient one. It is thus worthwhile to consider a finite horizon model,
as discussed in Section 2. Are the rent dissipation and selection properties
obtained naturally?

Unlike for price competition, entry deterrence consists in inflating
Ž .capacities. Hence, we should check that ¨ , C, and ¨ q C have mono-

tonicities opposite to those in Assumptions BB, CC, and DD.11 The monopoly
stage payoff can be written

¨ m k s k 1 y k y F ,Ž . Ž .i i i i i

1w xwhere ¨ is decreasing for k g , 1 , which is the relevant range becausei i 2

the incumbent will deter entry by expanding its capacity beyond its
1 1unconstrained monopoly level, . Given a capacity k G for firm i, firm ji2 2

minimizes its entry cost by maximizing its short-run revenue and choosing
Ž . Ž .k k s 1 y k r2. Its entry cost is thenj i i

1 y ki 2C k s y¨ , k s F y 1 y k r4.Ž . Ž .j i j i j iž /2

1w xHence C is increasing for k g , 1 . If firm j enters, firm i earnsj i 2

1 y ki
d k s ¨ k , y F s k 1 y k r2 y F .Ž . Ž .i i i i i i i iž /2

Ž .In the case of symmetric firms, the function ¨ q C can be written

2¨ q C k s k 1 y k y 1 y k r4 s 1 y k 5k y 1 r4,Ž . Ž . Ž . Ž . Ž . Ž .
3 1Ž . Žwhere ¨ q C is increasing for k F . For the relevant range for k to be ,5 2

3 . Ž ., the fixed cost must be in 0.24, 0.25 . Indeed, it must be greater than5
30.24 so that is an upper bound to capacities allowing a firm to break5

even, while 0.25 is the maximum revenue that an incumbent can earn that

11 Equivalently, one could consider x s yk as the strategic variable and check thei i
monotonicities as in Assumptions BB, CC, and DD.
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Ž .must cover its fixed cost. As long as the fixed cost is in 0.24, 0.25 , the rent
dissipation and selection properties naturally hold. However, as soon as
the fixed cost is below 0.24, even the rent dissipation property does not
obtain in this model.

It is instructive to contrast the price and the quantity models in terms of
their strategic variables and the corresponding reaction functions for an
entrant. The first example deals with strategic complements for which the
entry price amplifies the incumbent’s price; to a low price by the incum-
bent corresponds an even lower entry price. The entry cost varies widely
with the incumbent’s price. By contrast, the second example deals with
strategic substitutes; the optimal policy to enter is not very sensitive to the

1Ž Ž . .incumbent’s policy  k k r k s y . A change in the incumbent’sj i i 2

policy affects only mildly the entry cost, contrary to what Assumption DD

requires. Therefore, the rent dissipation and selection properties obtain
more naturally with strategic complements than with strategic substitutes.12

4.3. Durable capital as an entry barrier

The last example is adapted from the plant renewal model of Eaton and
Ž .Lipsey 1980 . Time is taken to be continuous, to facilitate the calculations.

Since there are well-known difficulties with subgame perfection in continu-
Ž .ous time games see Simon and Stinchcombe, 1989 , all our results should

be read as limit results for discrete time games, when the grid of moves
becomes arbitrarily fine. Production requires setting up a plant that

� 4becomes obsolete after H units of time. To set it up, firm i, with i g 1, 2 ,
incurs a large fixed cost F . Operating costs are assumed to be zero. If bothi
firms are in the market, their duopoly flow of revenue is p per unit ofd
time. If only one of them is present, its flow of revenue is p .m

Ž .Two additional assumptions are made. First, max F , F - p H -1 2 m
Ž .F q F , so that a single firm operates in equilibrium. Second, p -1 2 d
p r2; i.e., duopoly competition depresses profits.m

Eaton and Lipsey study entry-prevention through premature renewal of
capital. The strategic variables are the dates at which the firms set up new
plants. They characterize the incumbent’s OEPP in the case of symmetric
firms and show that the corresponding premature renewal of plants leads
to rent dissipation when the discounting is low enough. In the limit, the
incumbent renews its plant as soon as it has covered its fixed cost of
installation. Their rational expectations argument, which leads to the

12 Ž .Lahmandi-Ayed 1995 considers a model in which the entrant becomes the next leader
only if it sets a capacity higher than that of the incumbent. This ‘‘escalation rule’’ restores the

Ž Ž . .desired results. Indeed, it aligns the entrant’s decision on the incumbent’s k k s k andj i i
ensures that the entry cost varies as much as the monopoly profit does when the incumbent
increases its capacity.
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classical recursive formulation, cannot be extended as such to the case of
asymmetric firms.

In order to examine the selection issue, we consider instead the finite
horizon version of their capital replacement game. By a finite horizon N it
is meant that only a fixed, finite number N of equipment can be set up in
the industry as a whole and that firms compete for the installment of these
plants.13 For N s 2, the first equipment can be replaced only once, either
by the incumbent or by its rival. In particular the last equipment will be
exploited until the end of its natural lifetime. As opposed to the two
previous models, no other assumption than the fixed number of plants is
needed to directly set the game as a sequential move game with endoge-
nous leadership which can be solved within our framework.

Suppose that a firm renews its plant at date t . The new plant duplicatesi
Ž .the existing capacities during H y t time units but extends the produc-i

tion lifetime by t time units. The monopoly stage payoff associated withi
this new plant is then defined as its additional ¨alue with respect to the
existing capacities set up by the same firm,

¨ t s p t y F .Ž .i i m i i

It is increasing in t . Given a planned renewal date t , the entry-cost-i i
minimizing strategy for firm j consists in preempting the next plant, i.e. to
set it up immediately prior to t . Since the previous incumbent’s equipmenti
still has H y t units of time to go, firm j has to share the market withi
firm i during these H y t units and earns the duopoly flow of revenue p .i d
The entry cost is defined as the loss in revenue due to the initial duopoly
phase:

C t s p y p H y t .Ž . Ž . Ž .j i m d i

C is decreasing in t .j i
Ž .Ž .Considering symmetric firms, we have ¨ q C t s p ? t q a , where ad

Ž .is a constant. Then, ¨ q C is decreasing in t if and only if p F 0; rentd
dissipation and selection are obtained by assuming that duopoly destroys
revenues.

The phenomena underlying the rent dissipation and selection results are
best captured in the case p s 0. Entry barriers coincide with prematured
renewal of capital, provided that, once the plant is set up, the incumbent is
committed to be in the market until its obsolescence. Then, renewing

13 Interpreting a finite horizon as a situation in which there is a fixed, finite number of
plants to be set up simplifies the analysis. An alternative would be to consider a limited time
horizon, which would lead to the same type of results, although at the cost of a considerable
analytical and notational burden.
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capital prematurely implies that the entrant always faces a minimal resid-
ual phase of duopoly competition if it enters, which partly destroys its
revenues. The entry-preventing policy forces the incumbent to reduce the
exploitation period of each plant. With symmetric firms and p s 0, thed
rent dissipation is readily obtained since the incumbent does not earn any

Ž .profit on each new plant. Indeed, the function C q ¨ is constant and the
sequence of renewal dates is stationary:

t1 s ??? s t n s ??? s Frp .m

With asymmetric firms, Lemma 2 shows that the less efficient firm has to
Žrenew at an even more rapid pace in order to maintain. It then loses more

.than a fixed amount of money on each new plant. Incumbency can be
profitable to the less efficient firm only if the profit earned over the first
plant outweighs the additional loss incurred for all subsequent plants.
Obviously, for a large enough number of plant renewals, this cannot be the
case and the less efficient firm is better off exiting; the more efficient firm
is selected as the long-run incumbent.

Ž .Moreover, Steinmetz 1996 shows that the rent dissipation and selection
results might hold as well for positive values of p , i.e. in the case of a lessd
destructive duopoly competition. This illustrates in particular that Assump-
tion DD is a sufficient, but not a necessary, condition.

5. CONCLUSION

In dynamic entry-deterrence contexts, whenever firms are asymmetric,
selection is the very first economic property to investigate. This article
provides sufficient conditions for this property to hold, using a simple
game theoretic framework. It also shows that these conditions lead quite
naturally to the already investigated rent dissipation property in the special
case of symmetric firms. Thus this article constitutes an extension of the
existing literature on entry. Three specific examples are examined which
illustrate the generality of our framework and, in particular, the context in
which our sufficient conditions can arise naturally. They also point out that
these conditions are not necessary ones.

In order to focus on the selection question, several issues have been left
aside. The main short-coming of our approach may be the assumption of a
finite horizon. While the selection property arises very naturally in such a
setting, some equilibrium features are not very appealing, especially the
cyclicity of the strong firm’s OEPP. Hence a first potential avenue of
future research would be to formulate a solution for general infinite
horizon games which captures our effects. One can hope, in particular, to
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reconcile the Markov equilibrium approach with ours. Another line of
future research is to extend the analysis to more general situations. For
instance, the results should carry through to natural oligopolies. The
process of leadership transfer has been modelled in a reduced form. It
could be developed and refined, e.g., to describe the incumbent’s exit
decision. Finally, new interesting effects, such as reputation building, arise
when firms have private information about their level of efficiency. The
formal analysis of these questions is left for future research.
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