
Financially Constrained Arbitrage

and Cross-Market Contagion ∗

Denis Gromb

HEC and CEPR

Dimitri Vayanos

London School of Economics

CEPR and NBER

This draft: January 13, 2017

Abstract

We propose a continuous time infinite horizon equilibrium model of financial markets in

which arbitrageurs have multiple valuable investment opportunities but face financial

constraints. The investment opportunities, heterogeneous along different dimensions,

are provided by pairs of similar assets trading at different prices in segmented markets.

By exploiting these opportunities, arbitrageurs alleviate the segmentation of markets,

providing liquidity to other investors by intermediating their trades. We characterize

the arbitrageurs’ optimal investment policy, and derive implications for market liquidity

and asset prices.
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1 Introduction

Frictionless arbitrage is a central assumption in finance theory and all of its practical applications.

However, it is hard to reconcile with the large body of evidence on asset-market anomalies, especially

those concerning the price discrepancies between assets with almost identical payoffs. One approach

to address the anomalies has been to abandon the assumption of frictionless arbitrage and study

the constraints faced by real-world arbitrageurs, e.g., hedge funds or trading desks in investment

banks. Arbitrageurs are often constrained in their access to external capital, and there is growing

evidence that their constraints affect their activity and ultimately market liquidity and asset prices.

These effects arise both during crises and more tranquil times, and in a variety of markets ranging

from individual stocks all the way to currencies.2

This paper develops a framework to examine the relation between arbitrageurs’ access to cap-

ital, financial market liquidity and asset prices. The framework itself has three main features.

First, we model arbitrageurs as specialized investors able to exploit profitable trades that other,

less sophisticated market participants cannot access directly as easily or as quickly. Arbitrageurs are

to be understood here as individuals and institutions responsible for providing liquidity in different

financial markets. At the same time, arbitrage is assumed to require capital to which arbitrageurs

have only limited access, i.e., they face financial constraints. These financial constraints, be they

margin requirements, limited access to external capital or barriers to entry of new capital, affect

the arbitrageurs’ investment capacity.

Second, we adopt a dynamic general equilibrium framework. On the one hand, arbitrageurs’

capital affects their ability to provide liquidity, which is ultimately reflected in asset prices. On

the other hand, asset price movements determine arbitrage profits and, therefore, arbitrageurs’

capital. This dynamic interaction shapes arbitrageurs’ investment policies, asset prices and market

liquidity.

Third, we model arbitrageurs as facing multiple arbitrage opportunities with different charac-

teristics, and across which they must allocate their scarce capital. This aspect is important to study

the cross-sectional properties of arbitrageurs’ optimal investment policy, as well as those of market

liquidity and asset prices. In particular, it allows us to analyze phenomena of price contagion and

liquidity linkages across markets.

We aim to analyze a number of questions relative to arbitrageurs’ investment strategy. To

2For example, Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) find that bid-ask spreads
quoted by specialists in the New York Stock Exchange widen when specialists experience losses. Hameed, Kang, and
Viswanathan (2010) and Nagel (2012) show that the returns to a liquidity-providing strategy that exploits short-term
reversals are higher following drops in the stock market or increases in volatility, times during which specialists are
more likely to be constrained. Coval and Stafford (2007) show that stocks sold by distressed mutual funds, which
experience extreme outflows, perform abnormally well after the outflows occur. Jylha and Suominen (2011) find that
outflows from hedge funds that perform the carry trade predict poor performance of that trade, with low interest-rate
currencies appreciating and high-interest rate ones depreciating.
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start with, what is the optimal investment strategy of an arbitrageur with financial constraints?

How is the need for risk management created by financial constraints resolved when there are

multiple arbitrage opportunities with different characteristics? How does an arbitrageur’s optimal

investment policy respond to shocks to their capital?

More importantly, we are interested in questions about asset prices and market liquidity. Fi-

nancial constraints lead to wealth effects creating price and liquidity linkages across markets. Which

asset or trade characteristics make them more sensitive to changes in arbitrageurs’ capital? How

much time-variation in convergence spreads is explained by contagion vs. fundamentals? Is diver-

sification of arbitrageurs effective despite contagion effects?3

Our model’s building block is as follows.

We begin by modelling financial markets needing liquidity as in Gromb and Vayanos (2002,

2008, 2014). We consider two risky assets paying similar (and possibly identical) dividends but

traded in segmented markets. The demand by investors on each market for the local risky asset

is affected by endowment shocks that covary with the asset’s payoff. Since the covariances differ

across the two markets, the assets’ prices can differ. Said differently, the investors in the segmented

markets would benefit from trading with each other to improve risk sharing. However, there is no

liquidity due to the assumed segmentation.

This unsatisfied demand for liquidity creates a role for arbitrageurs. We model arbitrageurs as

competitive specialists able to invest across markets and thus exploit price discrepancies between

the risky assets. By doing so, they facilitate trade between otherwise segmented investors, provid-

ing liquidity to them. In that respect, arbitrageurs are also financial intermediaries. Arbitrageurs,

however, face financial constraints in that their risky asset positions must be collateralized sepa-

rately with a position in the riskfree asset. Given these constraints, the arbitrageurs’ ability to

provide market liquidity depends on their wealth. The arbitrageurs’ wealth is to be understood

as the pool of capital they can access frictionlessly. In that case, there is no distinction between

arbitrageurs’ internal funds and the “smart capital” they raise externally. If this total pool of

capital is insufficient, arbitrageurs may be unable to provide perfect liquidity.

Based on that building block, we develop a continuous time general equilibrium model in which

competitive arbitrageurs face at each point in time several arbitrage opportunities, i.e., multiple

asset pairs of the kind described above. These opportunities are heterogeneous along different

dimensions (e.g., volatility, market size, margin requirements). Because of their limited access

to external capital, arbitrageurs face a complex investment problem. On the one hand, they must

allocate their scarce capital across opportunities and over time. On the other hand, the performance

of these investments affect their investment capacity in the future.

3We do not explicitly analyze the important welfare and policy issues raised by financially constrained arbitrage.
See however Gromb and Vayanos (2002, 2008) as well as Gala, Gromb and Vayanos (2008).
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To begin with, we study the case of riskless arbitrage, in which two assets in a pair pay the

exact same dividends. In this case, we are able to derive all equilibrium variables in closed form.

This allows us to draw a variety of implications, the following being but examples.

Some implications are cross-sectional in nature, i.e., comparing variables across opportunities

with different characteristics. For instance, we show that opportunities with higher margin require-

ments are more illiquid, offer higher excess returns and have higher risk premia. The intuition

for these results is that investment opportunities requiring arbitrageurs to tie up more capital as

collateral must provide them with a greater reward, i.e., a higher excess return. Risk premia being

the present value of future excess returns, they must also be higher for such opportunities. In

our model, risk premia are a measure of the illiquidity arbitrageurs do not eliminate. Therefore,

illiquidity is higher for opportunities with higher margin requirements.

Other implications involve comparative statics, in particular with respect to arbitrageur wealth.

One way to interpret these results is as the effect of an unanticipated exogenous shock to arbitrageur

wealth. Among other results, we show that illiquidity and risk premia are more sensitive to arbi-

trageur wealth for opportunities with higher margin requirements. The intuition for these results

is that changes in arbitrageurs’ wealth affect the excess return (current or future) generated per

unit of collateral, and therefore impact more opportunities with higher collateral requirements.

Next, we analyze the important case of risky arbitrage. We model arbitrage risk as coming

from two distinct sources: “fundamental risk” and “supply risk”. In the context of our model,

fundamental risk refers to a situation in which the dividends paid by the assets in a given pair may

not pay identical but only correlated with each other. The occurrence of fundamental shocks affect

arbitrage profits, and therefore arbitrageur wealth and ultimately assets prices and liquidity. In

turn, the risk of such shocks in the future feeds back into the arbitrageurs’ investment policy. We

also consider supply risk which in our model means that the demand for liquidity by segmented

investors may not be predictable. Such shocks to the demand for liquidity affect risk premia both

directly, i.e., holding arbitrageur wealth constant, and indirectly because changes in premia affect

arbitrageur’s profit and therefore arbitrageur wealth.

First, we show that the arbitrageurs’ financial constraints create a linkage across otherwise

independent assets, i.e., fundamental and supply shocks to one opportunity affect all opportunities’

risk premia. The linkage goes through arbitrageur wealth. Indeed, a fundamental shock to one

opportunity affects the dividend arbitrageurs derive from that opportunity, and hence arbitrageurs’

wealth. Similarly, a supply shock to one opportunity affects that opportunity’s risk premium and

hence the capital gains arbitrageurs realize from their investment in that opportunity. In both

cases, a change in arbitrageur wealth affects all other opportunities’ risk premia.

To derive further implications, we consider the effect of arbitrarily small shocks, i.e., we study

equilibrium variables around the riskfree arbitrage equilibrium. We characterize the effect of dif-
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ferent shocks on arbitrageurs’ portfolios, market liquidity, the volatility of asset prices as well as

the correlation between the prices of different assets.

We show that liquidity, volatility and correlations are generally non-monotonic in arbitrageur

wealth. (Here, an asset’s liquidity is defined as the inverse of the impact a supply shock would have

on the asset return.) It is therefore useful to consider cases of high and low arbitrageurs’ wealth

separately.

If arbitrageurs’ wealth is high, as arbitrageurs’ wealth increases, liquidity increases, while price

volatility decreases for all assets. As for correlations, they decrease for assets whose fundamentals

are uncorrelated, and increase for assets whose fundamentals are correlated.

Maybe more surprisingly, these relationships are reversed when arbitrage wealth is low. In

that case, as arbitrageur wealth increases, liquidity decreases, while price volatility increases for

all assets. At the same time, correlations increase for assets whose fundamentals are uncorrelated,

and decrease for assets whose fundamentals are correlated.

The reason for this reversal is that for high wealth levels, arbitrageurs are unlikely to be

constrained in the near future and therefore their positions are not very sensitive to wealth. In

that case, a drop in wealth does not reduce much the positions arbitrageurs take and therefore does

not affect much the amount of wealth arbitrageurs put at risk. However the opposite holds for low

levels of wealth. In that case, a drop in wealth leads to a large reduction in arbitrageurs’ positions,

reducing the amount of wealth arbitrageurs put at risk.

Relation to the Literature (incomplete)

We view our framework itself as a contribution. Indeed, we provide a model of limited arbitrage

capturing both intertemporal aspects of arbitrage and allowing for a cross-section of investment

opportunities with different characteristics: volatility, horizon, market size, etc. The model nests

both riskfree arbitrage as well as arbitrage involving fundamental risk and supply risk. Yet, the

model remains fairly tractable and flexible (e.g. closed for solutions in the riskfree arbitrage case),

and has some standard features including an infinite horizon and stationarity.

Our analysis builds on the recent literature on the limits to arbitrage and, more particularly, on

financially constrained arbitrage.4 5 Gromb and Vayanos (2002) introduce a model of arbitrageurs

providing liquidity across two segmented markets but facing collateral-based financial constraints.

Their setting is dynamic, i.e., they consider explicitly the link between arbitrageurs’ past perfor-

mance and their ability to provide market liquidity, and how arbitrageurs take this link into account

4Alternative theories of the limits to arbitrage are generally based on incentive problems in delegated portfolio
management or bounded rationality of investors.

5Here, we discuss the relation of our paper to only the closest literature. It is however connected to a broader set
of contributions which, given binding (time) constraints, we intend to discuss in future versions. Gromb and Vayanos
(2002, 2008, 2010) contain more detailed descriptions of the relevant literature.
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in their investment decision. They also conduct a welfare analysis. Conceptually, this paper ex-

tends the analysis by considering multiple investment opportunities. Technically, the model is also

cast in an infinite horizon, rather than a finite horizon, and continuous rather than discrete time.

The Gromb and Vayanos (2002) model is extended to multiple investment opportunities in a

static setting by Brunnermeier and Pedersen (2009) who show how financial constraints imply that

shocks propagate and liquidity co-moves across markets. In contrast, ours is a dynamic setting.

Gromb and Vayanos (2014) also extend the model to multiple investment opportunities but in

a dynamic, infinite horizon, framework. However, they focus on the case of riskfree arbitrage and

the dynamics it implies.

Kyle and Xiong (2001) obtain similar financial contagion effects driven by the wealth of ar-

bitrageurs. These arise not from financial constraints but from arbitrageurs’ logarithmic utility

implying that their demand for risky assets is increasing in wealth.

The paper proceeds as follows. Section 2 presents the model. Sections 3 and 4 study riskless

and risky arbitrage respectively. Section 5 concludes. The Appendix contains mathematical proofs.

2 The Model

The universe of assets consists of a riskless asset and pairs of risky assets. The risky assets in a

pair pay correlated dividends (Section 2.1), and are traded on segmented markets by agents we call

outside investors (Section 2.2). Segmentation prevents gains from trade, thereby creating a role

for arbitrageurs who, unlike outside investors, can access all assets and thus provide liquidity to

outside investors. While arbitrageurs have better investment opportunities than outside investors,

they face financial constraints limiting their ability to exploit these opportunities (Section 2.3).

2.1 Assets

Time is continuous and indexed by  ∈ R+. The riskless asset has an exogenous continuously
compounded return . There is a set I of risky assets, all in zero net supply.1 For  ∈ R+, asset
 ∈ I’s price is  and its cumulative dividend  evolves according to

 = +  + 

 


 (1)

where , , and 

 are constants, and  and 


 are independent Brownian motions. The

constant  is asset ’s instantaneous expected dividend.

1The assumptions of exogenous riskless return, and zero net supply assets are for simplicity. In particular, the
latter ensures that arbitrageurs hold opposite positions in risky assets in the same pair.
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Assets come in pairs. We denote − the other asset in asset ’s pair. Moreover,  and 00

as well as 

 and 


00 are independent Brownian motions unless 

0 = − and  = 0. Instead,

− =  and 

− = 


. Finally, we assume that the shock  has identical effects on the

two assets, while 

 has opposite effects, i.e.,

− =  and 

− = −  (2)

This specification nests the case in which the dividends paid by assets  and − in a pair are
correlated but different (


 6= 0) and that in which they are identical ( = 0). These cases will

correspond to arbitrage opportunities with and without fundamental risk respectively.

2.2 Outside Investors

Outside investors form overlapping generations that each live for an infinitesimal time period. For

them, the markets for all risky assets are segmented, i.e., each outside investor can form portfolios

of only two assets: the riskless asset and a single and specific risky asset. We refer to investors

born at time  and who can invest in risky asset  as ( )-investors.

Market segmentation is taken as given, i.e., ( )-investors are assumed to face prohibitively

large transaction costs for investing in any risky asset other than asset . These costs can be due to

unmodelled physical factors (e.g., distance), information asymmetries or institutional constraints.

Market segmentation is a realistic assumption in many contexts. In an international context, for

example, it is well known that investors mainly hold domestic assets.

At each time , the ( )-investors are competitive, form a continuum of measure , and all have

the same constant absolute risk aversion coefficient . Denoting  a change in an ( )-investor’s

wealth , his preference over instantaneous mean and variance is therefore
6

()− 

2
 () (3)

At each time , the ( )-investors receive non-tradeable endowments that are correlated with

asset ’s dividend. Specifically, the endowment consists of  shares of asset , where  evolves

according to the Ornstein-Uhlenbeck process

 =  ( − )+  

 (4)

6This property also arises under exponential utility or if initial wealth is the same across all generations. We
show below that the logarithmic preferences of arbitrageurs generate similar preferences over instantaneous mean and
variance, but with the weight on variance depending on wealth. We suppress wealth effects for the ( )-investors
because unlike those for arbitrageurs, they are not central to our analysis.
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where  ,  and  are constants and 
 is a Brownian motion independent of  and 


.
7

The coefficient , which can be positive or negative, measures the extent to which the endow-

ment covaries with asset ’s dividend. If  is large and positive, the shock and dividend are highly

positively correlated, and thus the willingness of ( )-investors to hold asset  at time  is low. Con-

versely, if  is large and negative, the shock and dividend are highly negatively correlated, and

the ( )-investors keen to hold asset  at time  for hedging. We refer to  as the ( )-investors’

supply parameter to emphasize that their asset demand decreases with . The model nests the

case in which  is stochastic (

 6= 0) and that in which  is deterministic (


 = 0). These

cases will correspond to arbitrage opportunities with and without supply risk respectively.

We assume that ( )- and (− )-investors are identical but for their supply parameters, i.e.,8

∀ ∈ I − = − (5)

Because their supply parameters differ, ( )- and (− )-investors have different propensities to
hold assets  and −. However, they cannot realize the potential gains from trade due to market

segmentation. This unsatisfied demand for liquidity creates a role for arbitrageurs.

Each ( )-investor’s problem, P, is to choose a holding  of asset  at time  to maximize
(3) subject to a dynamic budget constraint, derived as follows. At time , an ( )-investor invests

 in asset  and the rest of his wealth, ( − ), in the riskless asset, from which he

receives a return . His total exposure to asset  is therefore ( + ), from which he receives a

dividend  and a capital gain . Hence, his dynamic budget constraint is

 = ( − )+ ( + )( + ) (6)

Note that the evolution  of the endowment does not affect : it only affects the endowment

of the generation of ( + )-investors.

2.3 Arbitrageurs

We model arbitrageurs as specialists able to invest across markets to exploit price discrepancies

between similar risky assets. Arbitrageurs are infinitely lived, competitive and form a continuum

with measure 1.9 We denote their wealth at time  as . They maximize intertemporal utility of

7For consistency with the zero net supply assumption, endowments can be interpreted as positions in a different
but correlated asset, e.g. labor income. This specification is standard in the market microstructure literature (O’Hara,
1995).

8That is, we assume  = − and  = −. The assumed preferences make assuming  = − useless for the
analysis.

9By fixing the measure of the arbitrageurs, we rule out entry into the arbitrage industry. This seems a reasonable
assumption at least for understanding short-run market behavior.
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consumption ( at time  ∈ R+) under logarithmic preferences with discount factor , i.e.,



∙Z ∞



log()
−(−)

¸
 (7)

Unlike other investors, arbitrageurs can invest in all risky assets and in the riskless asset. Doing

so, they facilitate trade between otherwise segmented investors, providing liquidity to them.

At time , each arbitrageur invests  in asset , from which he receives a dividend ,

and a capital gain , and the rest of his wealth,
¡
 −

P
∈I 

¢
, in the riskless asset, from

which he receives a return . Therefore, an arbitrageur’s dynamic budget constraint is

 = 

Ã
 −

X
∈I



!
+

X
∈I

( + )−  (8)

Arbitrageurs, however, face financial constraints in that their positions in any risky asset must

be collateralized separately with a position in the riskfree asset. Specifically, we assume that to long

or short one share of asset , they must post some exogenous amount   0 of riskless collateral.

Therefore, their investment capacity is limited by their wealth:

 ≥
X
∈I

|| (9)

To keep the model symmetric, we assume that = −. Given these constraints, the arbitrageurs’

ability to provide market liquidity depends on their wealth. The arbitrageurs’ wealth is to be

understood as the pool of capital they can access frictionlessly. In that case, there is no distinction

between arbitrageurs’ internal funds and the “smart capital” they raise externally. If this total pool

of capital is insufficient, arbitrageurs may be unable to provide perfect liquidity to markets.

Each arbitrageur’s problem, P, is to choose holdings {}∈I≥ to maximize utility (7)
subject to the dynamic budget constraint (8) and the financial constraint (9).

2.4 Equilibrium

Definition 1 A competitive equilibrium consists of prices , asset holdings of the ( )-investors,

, and of the arbitrageurs, , such that given the prices,  solves problem P, and {}∈I≥
solve problem P, and the markets clear for all risky assets  ∈ I and all times  ∈ R+:

 +  = 0 (10)
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We define the risk premium  of asset  at time  as the difference between the asset’s expected

payoff and its price, i.e.,

 ≡ 

∙Z ∞



−(−)

¸
−  =




−  (11)

Definition 2 A competitive equilibrium is symmetric if for any asset pair (−) and time , the
risk premia are opposites, i.e., − = −, the arbitrageurs’ positions in the two assets are
opposites, i.e., − = −, and so are the outside investors’ positions, i.e., − = −.

Due to our model’s symmetry, a symmetric competitive equilibrium can be shown to exist.

Intuitively, risk premia are opposites because assets are in zero net supply and the supply shocks

of ( )- and (− )-investors are opposites. The arbitrageurs’ positions are opposites because the
risk premia are opposites, and the outside investors’ are opposites because markets must clear.

Note that by symmetry, the midpoint between prices  and − is the value they would both

take absent dividend risk ( = 

 = 0), i.e.,

− + 

2
= 

∙Z +∞



−(−)

¸
=




 (12)

Therefore, asset ’s risk premium is also one-half of the price wedge between assets − and , i.e.,

 =
− − 

2
 (13)

Note also that arbitrageurs act as intermediaries. Suppose, for instance, that ( )-investors

incur a positive supply shock, in which case (− )-investors incur a negative one. Then arbitrageurs
buy asset  from ( )-investors and sell asset − to (− )-investors. Through this transaction
arbitrageurs make a profit, while at the same time providing liquidity to the other investors.

Define the instantaneous return per share of asset  at time  in excess of the riskfree rate as

 ≡  +  − 

i.e., dividends and capital gains net of the riskfree return. Using (1) and (11), we have

 = +  + 

 


 −  (14)
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3 Riskless Arbitrage

We start with the case in which there is no fundamental risk and no supply risk. No fundamental

risk means that assets  and − pay identical dividends, i.e.,  = 0. No supply risk means that 
is deterministic, i.e.,  = 0. For simplicity, we assume  to be constant over time, i.e.,  = .

We can show that a symmetric equilibrium exists in which the risk premia , the outside

investors’ positions , and the arbitrageurs’ positions  and total wealth are all deterministic.

Indeed, absent fundamental risk, the arbitrageurs’ opposite positions in assets  and − ensures their
wealth does not depend on dividends. Hence  and  are also independent of dividends. Since

there is no other source of risk, ,  and  are deterministic.
10

3.1 Optimal Investment Policies

We first characterize outside investors’ and arbitrageurs’ optimal investment policies. As a first

step, we denote by 

 the drift of the premium , i.e.,

 ≡ 

 (15)

and by Φ the instantaneous expected excess return of asset  at time , i.e.,

Φ ≡ ()


=  − 


 (16)

Absent arbitrageurs, Φ is positive for any asset  ∈ A ≡ { ∈ I :   0}.

3.1.1 Outside Investors

We study the ( )-investors’ problem P for  ∈ A. The budget constraint (6) becomes

 =
h
 + 

³
 − 




´
+ Φ

i
+ ( + ) (17)

and each ( )-investors’ objective is

max


∙
Φ − 

2


2
( + )

2

¸


The first term is the ( )-investor’s gain from their investment in asset  over and above the riskless

rate if dividends are certain. This term is certain. The second term is the cost of bearing risk due

10Note that the prices  are deterministic since they are ex dividend prices, but this property is not crucial.
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to the uncertainty of dividends and of the supply shock. This inventory cost increases with the

position in the risky asset, , the magnitude of the supply shock, , the volatility of dividends,

, and the investor’s risk aversion, . At the optimum, the marginal inventory cost must equal

the expected capital gain per unit of risky asset, i.e.,

Φ = 
2
 ( + ) (18)

This first-order condition determines the ( )-investors’ demand . By symmetry, problem P−
yields the same first-order condition as P.

3.1.2 Arbitrageurs

We study the arbitrageurs’ optimization problem P. We characterize an arbitrageur’s optimal
consumption and investment policy under the restriction that the prices of assets in the same pair

are driven by symmetric processes, i.e., − = −. Using (1), (11), (15), (16) and symmetry, we
can write the arbitrageurs’ dynamic budget constraint (8) as

 =

Ã
 + 2

X
∈A

Φ − 

!
 (19)

The first term is the arbitrageurs’ return if they invest all their wealth in the riskless asset. The

second term is the arbitrageurs’ total gains over and above the riskfree rate. The arbitrageurs’

positions in assets  and − being opposites, they eliminate all risk. Therefore, these gains are an
instantaneous riskfree excess return. The third term is arbitrageurs’ consumption.

Arbitrageurs reduce price wedges but do not change the sign of Φ. Moreover, for all  ∈ A,
  0 implies that arbitrageurs long asset , i.e.,  ≥ 0, and asset  yields a positive instantaneous
excess return, i.e., Φ ≥ 0. By symmetry, the arbitrageurs’ financial constraint (9) is

 ≥ 2
X
∈A

 (20)

Proposition 1 For symmetric price processes, each arbitrageur consumes a constant fraction  of

his wealth, i.e.,  = , and invests as follows.

• If Φ = 0 for all  ∈ I, the arbitrageur is indifferent between all investment policies satisfying
the financial constraint.

• Otherwise, he invests only in opportunities (−) yielding the maximum excess return per

unit of collateral, i.e., such that  ∈ argmax∈AΦ, up until his financial constraint

binds.

12



The intuition is as follows. From expression (19), an arbitrageur’s optimization problem at all

times is to maximize the excess return 2
P

∈A Φ under financial constraint (20). The solution

is simple. Given their logarithmic utility, arbitrageurs consume a fixed fraction  of their wealth.11

If all arbitrage opportunities yield no excess return, the arbitrageur’s investment policy is a matter

of indifference. If however some opportunities yield a strictly positive excess return, the arbitrageur

should focus on those yielding the highest excess returns per unit of collateral, and invest up to

the financial constraint in any (subset) of them. Establishing the “excess return on collateral” per

each asset pair is also simple. Indeed, asset pair (−) yields an excess return 2Φ but requires
collateral of 2. Hence the excess return per dollar used as collateral is Φ. Finally, since

some opportunities offer arbitrageurs a riskfree return that strictly exceeds the riskfree rate, the

arbitrageur should invest as much as possible, i.e., “max out” his financial constraint.

3.2 Equilibrium

Proposition 1 is a statement about optimal investment policies given asset prices, but can be

rephrased in terms of the asset prices implied by these investment policies.

Corollary 1 At any time , there exists Π ∈ [0 1) such that arbitrageurs invest only in opportu-

nities (−) with 
2



 Π. Moreover, all opportunities in which arbitrageurs invest offer the

same instantaneous excess return per unit of collateral, equal to Π, i.e.,

Φ


= Π (21)

while opportunities in which they do not invest offer lower returns.

The equalization of “excess return on collateral” across opportunities in which arbitrageurs

invest is a consequence of equilibrium: If returns differed, arbitrageurs would focus on those op-

portunities with the highest returns (Proposition 1), which would be a contradiction. Moreover if

arbitrageurs do not invest in opportunity (−), the potential excess return Φ it offers is 2
(from Eq. (18) with  = 0). Hence arbitrageurs do not invest in opportunities with


2
 


≤ Π as

this would push their return below Π. Instead, they invest in opportunities if the supply parameter

, volatility of dividends , and investor risk aversion  are large, and the collateral required is

low

11An alternative interpretation of  is therefore a proportional cost of running the arbitrage business.
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Lemma 1 At time , arbitrageurs’ position in opportunity (−) is

 = max

½


µ
 − Π


2


¶
; 0

¾
 (22)

We can now determine arbitrageur wealth dynamics, which depend on whether financial con-

straint (20) is binding. First, notice that optimal risk sharing (which would occur absent segmen-

tation) would require  = −− = . To provide this optimal level of liquidity to all outside

investors at time , arbitrageurs would have to post total collateral of

 ≡ 2
X
∈A



Lemma 2 Arbitrageur wealth evolves according to

 = (Π − ( − )) (23)

The excess return Π per unit of collateral depends on wealth as follows:

• If  ≥, the financial constraint is slack, and arbitrageurs earn no excess return, i.e.,

Π = 0

• If   , the financial constraint is binding and arbitrageurs earn positive excess returns,

i.e., Π  0. Moreover, the lower arbitrageur wealth, the higher the excess returns. In

particular, if arbitrageurs invest in all opportunities,

Π = ( −) with  ≡ 1

2
P

∈A
2



2


 (24)

If  ≥ , arbitrageurs have enough wealth to close all arbitrage opportunities, i.e., the

financial constraint is slack. Therefore, they earn no excess return (Π = 0), and their wealth

declines at rate ( − ), i.e., the consumption rate  net of the riskfree rate . If instead   ,

arbitrageurs do not close all opportunities, i.e., their financial constraint is binding. As a result,

they earn the positive excess return Π = (−) per unit of wealth. Importantly, this return

is larger when arbitrageur wealth is lower. Indeed arbitrageurs can intermediate less trades between

outside investors and price discrepancies are larger.

To solve the dynamics in Lemma 2, we make the following assumptions.

Assumption 1 Arbitrageur wealth converges to a steady-state value  ∈ (0), i.e.,

0   −    (25)
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If   , arbitrageurs are net dissavers when earning the riskfree rate, which they do if ≥.

Hence   , where the financial constraint binds. If    +, arbitrageurs are net savers

when facing the attractive returns the opportunities yield if  is small. Hence   0.

Note that the steady state the excess return per unit of collateral Π must be such that  = 0.

From Eq. (23), we have Π =  − , which is larger if arbitrageurs are more impatient (large ).

Indeed, to maintain a constant wealth despite consuming at a higher rate, arbitrageurs must earn

a higher return on their investments. Said differently, if arbitrageurs consume more, they have less

wealth to use as collateral and therefore price wedges remain wide, ensuring higher excess returns.

Assumption 2 In the steady state, arbitrageurs invest in all arbitrage opportunities, i.e.,

min
∈A


2



  −  (26)

Obviously, arbitrageurs also invest in all opportunities when their wealth exceeds the steady-

state value and by continuity, when it is not far below.

Under these assumptions, we can characterize all equilibrium variables in closed form.

Proposition 2 Define  ≡  − ( − )  0. Arbitrageur wealth converges monotonically

towards its steady state value  = . From time  onwards, arbitrageur wealth is as follows.

• If   , arbitrageur wealth remains strictly below  and is given by:

 =


(−)




£
(−) − 1¤+ 1   for  ≥  (27)

• If  ≥ , arbitrageur wealth decreases and eventually drops strictly below  and follows

the above dynamics from then on, i.e.,

 =
−(−)(−) ≥ for  ∈ [ ] (28)

 =


(−)




£
(−) − 1¤+ 1   for    (29)

where  is the time when  = and is given by


−(−)(−) = (30)

We now turn to risk premia which, from Eq. (16), equal the present value of future instantaneous

expected excess returns:

 =

Z ∞



Φ
−(−) (31)
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From Φ = Π = max {0 −}, we can derive the risk premia dynamics from that of

arbitrageur wealth:

 = 

Z ∞



max {0 −} −(−) (32)

Proposition 3 The risk premium of asset  ∈ A at time  is

• If   ,

 = 

Z ∞

0

"
 − 





 ( − 1) + 1

#
− (33)

• If  ≥,

 = 

µ




¶ 
−

Z ∞

0

"
 − 





 ( − 1) + 1

#
− (34)

• As  increases, the risk premium  converges monotonically towards its steady state value

 = 

µ
 − 



¶


Finally, we can derive the arbitrageurs’ equilibrium positions (Lemma 1).

Proposition 4 The arbitrageurs’ position in asset  ∈ A at time  is as follows:

 = 

µ
 − 


2


max { −; 0}
¶
 (35)

3.3 Properties

Having derived all equilibrium variables in closed form, we can draw many implications. Some

of these are cross-sectional in nature, i.e., comparing variables across opportunities with different

characteristics. Others involve comparative statics with respect to arbitrageur wealth. These can

be considered in two ways. First, because arbitrageur wealth varies over time out of steady state,

the comparative statics results can be translated into time series predictions while the equilibrium

is off the steady state. Alternatively, they can be interpreted as the effect of an unanticipated

exogenous shock to arbitrageur wealth. These are also useful for the analysis of risky arbitrage.

Note that due to the model’s symmetry, optimal risk-sharing, which would result from uncon-

strained trading, would imply  = 0.
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Definition 3 The risk premium  is a measure of the illiquidity ( )- and (− )-investors face.

Corollary 2 The risk premia are decreasing and convex in arbitrageur wealth, i.e., for all  ∈ A




 0 and

2

 2


 0

Consider a drop in arbitrageur wealth. Intuitively, the risk premia should increase because ar-

bitrageurs being poorer, they reduce their liquidity provision and allow prices to diverge. Moreover,

when arbitrageur wealth is smaller, the return on arbitrageurs’ wealth is larger and therefore a drop

in arbitrageur wealth has a larger impact on future arbitrage wealth and thus on risk premia.

Corollary 3 An asset’s risk premium is increasing in its supply, and more so the lower arbitrageur

wealth is, i.e., for all  ∈ A




 0 and

2


 0

Intuitively,  increases with  since the discrepancy between the valuations of ( )- and

(− )-investors is larger. There is a mitigating effect. Indeed, the higher , the higher the

arbitrageurs’ return and their future wealth. This tends to reduce future excess returns, and

therefore the current risk premium. For low levels of the mitigating effect is small, and therefore

 has a large effect on .

Corollary 4 Illiquidity is higher for opportunities with higher margin requirements. These oppor-

tunities offer higher instantaneous excess returns and have higher risk premia, i.e., for all ( ) ∈ A2

   ⇒ Φ  Φ and    (36)

Intuitively, investment opportunities requiring arbitrageurs to tie up more capital as collateral

must provide them with a greater reward, i.e., a higher excess return. Risk premia being the present

value of future excess returns, they must be higher for such opportunities.

Corollary 5 Illiquidity and risk premia are more sensitive to arbitrageur wealth for opportunities

with higher margin requirements, i.e., for all ( ) ∈ A2

   ⇒ 







 0 (37)
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Intuitively, changes in arbitrageur wealth affect the excess return (current or future) per unit

of collateral, and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 6 Illiquidity and risk premia are more sensitive to the supply of other assets for oppor-

tunities with higher margin requirements, i.e., for all (  ) ∈ A2

   ⇒ 







 0

Intuitively, changes in supply affect the excess return (current or future) per unit of collateral,

and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 7 Suppose   . Changes in arbitrageur wealth impact more strongly their position

in opportunity (−) than in (−) if 
2






2



.

When arbitrageurs are unconstrained (  ), they invest  =  in opportunity (−),
independently of their wealth. Instead, when they are constrained (  ), their wealth affect

their positions. For example, following a drop in wealth, arbitrageurs are more constrained and

reduce their investment in all opportunities. Investment is more wealth-sensitive for opportunities

with higher collateral requirements because the excess returns that arbitrageurs require to invest in

those opportunities are more affected by wealth changes (Corollary 4). Investment is less wealth-

sensitive for opportunities where outside investors are more risk-averse or assets are riskier because

outside investors for those opportunities have a more inelastic demand for insurance.

4 Risky Arbitrage

We now consider the possibility of arbitrage risk which in our model, stems from two sources:

fundamental risk and supply risk. Fundamental risk means that assets  and − in a pair need not
pay identical dividends, i.e., 


 6= 0. We assume   0 for  ∈ A. Supply risk means that asset

’s supply  is stochastic, i.e., 

 6= 0. We assume   0 for  ∈ A.12

We derive equilibrium conditions in Section 4.1, derive general properties of the equilibrium in

Section 4.2, and characterize the equilibrium more fully for small arbitrage risk in Section 4.3.

12Assuming 

  0 and   0 is without loss of generality as we can replace 


 and 

 with their opposites.
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4.1 Optimal Investment Policies

As we will see, an asset’s risk premium is affected by the fundamental shocks and the supply shocks

to all assets. Hence, for  ∈ A, we denote the dynamics of the risk premium  by

 ≡ 

+

X
∈A






 +

X
∈A






 (38)

Similarly, the instantaneous return of asset  is affected by all shocks to all assets because they

affect the asset’s risk premium. From Eqs. (14), (16) and (38), we have

 = Φ+  + 

 


 −

X
∈A






 −

X
∈A






 (39)

4.1.1 Outside Investors

We first characterize the optimal investment policies of outside investors. Using (1), (11), (16) and

(38), we can write the ( )-investors’ dynamic budget constraint (6) as

 =
h
 + 

³
 − 




´
+ Φ

i


+ ( + )

⎡⎣ + 

 


 −

X
∈A






 −

X
∈A








⎤⎦  (40)

The drift is the same as for riskfree arbitrage. The diffusion term captures the risky part of the

return of asset  (Eq. (39)). Given this, the ( )-investors’ objective is

max


h
Φ − 

2
( + )

2
¡

¢2i

 (41)

The first term is the expected excess return ( )-investors derive from their holding in asset . The

second term is a cost of bearing risk. It depends on asset ’s instantaneous volatility computed as

¡

¢2 ≡  ()


= 2 +

³


 − 




´2
+

X
∈A{}

³




´2
+
X
∈A

³




´2
 (42)

At the optimum, the expected excess return of asset  to the marginal cost of risk-bearing, i.e.,

Φ = 
¡

¢2
( + )  (43)

Their first order condition determines the ( )-investors’ demand . By symmetry, problem P−
yields the same first-order condition as P.
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4.1.2 Arbitrageurs

We characterize an arbitrageur’s optimal consumption and investment policy under the restriction

that the prices of assets in the same pair are driven by symmetric processes, i.e., − = −.
Using (1), (11), (16), (38) and symmetry, the arbitrageurs’ dynamic budget constraint (8) is

 =

Ã
 + 2

X
∈A

Φ − 

!
+2

X
∈A



⎛⎝

 


 −

X
∈A






 −

X
∈A








⎞⎠  (44)

The drift is the same as for riskless arbitrage, i.e., arbitrageur wealth increases by the risk free return

plus the expected excess returns provided by all opportunities net of the arbitrageurs’ consumption.

Now however, there are also diffusion terms because arbitrage is risky. Denote the respective

diffusion coefficients for the fundamental shock 

 and the supply shock 


 as



 ≡ 2 − 2

X
∈A



 and  ≡ −2

X
∈A



 (45)

A fundamental shock to opportunity (−) means that assets  and − do not pay the exact same
dividend. The “net dividend” affects arbitrageurs’ profit and hence their wealth. This direct effect

is captured by 2

 . At the same time, the shock affects all opportunities’ risk premia, and hence

the arbitrageurs’ capital gains from their investments in these opportunities. This effect is captured

by −2P∈A 

. A supply shock to opportunity (−) means that ( )- and (− )-investors

are more eager to trade. Such a shock does not affect arbitrageur wealth directly but indirectly

through its effect on the risk premia of all opportunities, which in turn affects arbitrageurs’ capital

gains and ultimately their wealth. This effect is captured by −2P∈A 

.

For  ∈ A, denote 2Φ̂ the arbitrageurs’ risk-adjusted return from opportunity (−). Indeed,
their expected excess return from opportunity (−), 2Φ, must be adjusted for the fundamental
and supply risk the opportunity entails. This is done by multiplying the arbitrageurs’ coefficient of

absolute risk aversion, equal to 1 due to logarithmic utility, with the covariance of the return

of opportunity (−) and that of the arbitrageurs’ portfolio, i.e.,

2Φ̂ ≡ 2Φ − ( − − )


 (46)

The covariance is obtained by summing over all fundamental and supply shocks the loading of
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(−)’s return on each shock times the arbitrageurs’ portfolio loading on that shock, i.e.,13

Φ̂ = Φ − 1



⎡⎣( − 

)


 −

X
∈A{}






 −

X
∈A








⎤⎦ 
We can now derive the arbitrageurs’ optimal policy.

Proposition 5 Denote Π ≡ max∈A
¯̄̄
Φ̂

¯̄̄
. Each arbitrageurs consumes a fraction  of his

wealth, i.e.,  = , and his investment policy satisfies one of the following conditions.

• The financial constraint (9) is slack and Φ̂ = 0 for all .

• The financial constraint (9) is binding and for all  ∈ A,

  0⇒ Φ̂


= Π and   0⇒ Φ̂


= −Π (47)

Proposition 5 is Proposition 1’s counterpart for risky arbitrage. When the financial constraint

is slack, arbitrageurs close all opportunities. When the financial constraint is binding, arbitrageurs

invest only in opportunities yielding the maximum return on collateral. There are however two

differences with Proposition 1. First, the relevant return from opportunity (−) is the risk-
adjusted return Φ̂, which depends both on prices and arbitrageur positions. Second, arbitrageurs

can “short” some opportunities, i.e., long the pricier asset and short the cheaper one (  0 for

 ∈ A). This can be optimal for arbitrageurs for hedging their long positions in other opportunities.

4.2 Amplification and Contagion: Direct and Indirect Effects

Equilibrium prices and positions solve the first-order condition of outside investors (Eq. (43)) and

arbitrageurs (Proposition 5). This system of equations is complex. Here we derive general properties

of equilibrium. We assume that the conditions in Assumptions 1 and 2 hold for the values .

Assumption 3 Define  ≡ 2
P

∈A. We assume

0   −    and min
∈A


2



  − 

13The arbitrageurs’ logarithmic utility simplifies the analysis because risk is measured by the covariance with the
arbitrageurs’ portfolio and not with other state variables.
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In equilibrium, the risk premium  is a function of arbitrageur wealth  and the supply

parameters {}∈A. Eq. (44) and Ito’s Lemma imply



 =






 and 


 =




 +




  (48)

As for riskfree arbitrage, arbitrageur wealth creates a linkage between the different opportunities

even though their fundamentals are independent.

Lemma 3 Fundamental and supply shocks to one opportunity affect arbitrageur wealth and the risk

premia of all opportunities. More precisely, for ( ) ∈ A2, the effect of a fundamental shock 


to opportunity (−) on arbitrageur wealth and on asset ’s the risk premium  are respectively



 =

2



1 + 2
P

∈A 



 (49)



 =





2



1 + 2
P

∈A 



 (50)

The effect of the supply shock 
 on the same variables are respectively

 = −
2
P

∈A 





1 + 2
P

∈A 



 (51)



 =




 −





2
P

∈A 





1 + 2
P

∈A 



 (52)

To develop an intuition, assume that (as for riskless arbitrage) arbitrageurs long all opportu-

nities (  0 for all  ∈ A), and risk premia decrease with arbitrageur wealth.

After a positive fundamental shock 

 to opportunity (−), asset ’s dividend exceeds

asset −’s, and arbitrageurs receive the “net dividend” 2 
. This direct effect on wealth

corresponds to the numerator in (49). Moreover, arbitrageurs being richer, risk premia decrease and

the arbitrageurs realize capital gains 2
P

∈A 



. This indirect effect on wealth corresponds

to the denominator in (49). Since   0 and



 0, this indirect effect amplifies the direct

effect. The indirect effect on the risk premium  is (50).

A positive supply shock 
 to opportunity (−) means that ( )- and (− )-investors

are more eager to trade. Holding wealth constant, such a shock has the direct effect of increasing
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asset ’s risk premium by



 

, the first term in (52). Due to the increase in risk premia,

arbitrageurs realize a capital loss 2
P

∈A 



 . Moreover, arbitrageurs being poorer, risk

premia increase and the arbitrageurs’ loss is amplified. The indirect effect on wealth is (51) and on

the risk premium  is the second term in Eq. (52).

4.3 Small Arbitrage Risk

In this section, we characterize the solution more fully when arbitrage risk is small (

 ' 0 and

 ' 0), and supply parameters are slowly mean-reverting ( ' 0). Specifically, we study how an
asset’s liquidity, volatility and correlation with other assets depend on arbitrageur wealth. We also

study arbitrageurs’ positions.

4.3.1 Liquidity

Eq. (39) implies that the impact of a supply shock 
 to asset  at time  on the asset return

 is ||. Hence we define asset ’s liquidity as

 ≡ 1

||
 (53)

All markets are less liquid than absent constraints. Indeed, arbitrageurs cannot absorb as much

of the supply shocks as they otherwise would. Since the extent to which financial constraints bind

depends on arbitrageur wealth, it is clear that liquidity should depend on arbitrageur wealth. We

show that while it does indeed, more arbitrageur wealth does not always yield more liquid markets.

Proposition 6 There exists   0 going to zero when {     }∈A go to zero such that

• If    + , asset ’s liquidity  increases with arbitrageur wealth .

• If  ≤   − , asset ’s liquidity  decreases with arbitrageur wealth .

The intuition is as follows. Supply shocks affect risk premia directly but also indirectly through

arbitrageur wealth (Lemma 3). The direct effect is weaker when arbitrageur wealth is high (Corol-

lary 3).14 The indirect effect, however, is a hump-shaped function of wealth. Indeed, at low levels

of wealth, the financial constraint is binding and an increase in wealth triggers a sharp increase in

14Corollary 3 is for the case 

 =  =  = 0, but by continuity, the result extends to small values of (


  


  


 ).
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arbitrageurs’ positions. When positions are larger, arbitrageur wealth is more sensitive to changes

in risk premia, and therefore the indirect effect is stronger. Instead, at high values of wealth,

arbitrageurs’ positions are less sensitive to wealth. The main effect of an increase in wealth is to

render risk premia less sensitive to wealth (Corollary 2), implying a weaker indirect effect. The

hump-shaped indirect effect drives the U-shaped pattern of liquidity.

4.3.2 Volatility

We next examine how arbitrageur wealth affects the volatility of assets. The volatility of asset 

is given by Eq. (42). All assets are more volatile than absent financial constraints. And again, it

is intuitive that volatility should depend on arbitrageur wealth. Indeed asset ’s volatility depends

on factors affecting the asset’s dividend,  and 

 , but also on factors affecting the supply of and

demand for the asset, 

 and 


. Unlike the former, the latter do depend on arbitrageur wealth,

so that asset volatilities do too. We show however that they do so in a non-trivial and generally

non-monotonic way.

Proposition 7 There exists   0 going to zero when {     }∈A go to zero such that:

• If    + , asset ’s volatility  decreases with arbitrageur wealth .

• If  ≤    − , the component of asset ’s volatility  due to supply shocks 



increases in arbitrageur wealth , and that due to the fundamental shock 

,  ∈ A,

increases if


2



≤
P

∈AP
∈A

2




2


 (54)

The intuition is as follows. A supply shock to asset  6=  has no direct effect on asset ’s

risk premium. However, as for a supply shock to asset  itself, its indirect effect is a hump-shaped

function of wealth. Therefore, absent fundamental shocks, volatility would be hump-shaped.

The fundamental shock 

 also generates hump-shaped volatility if  satisfies condition (54).

This condition is satisfied by a non-empty subset of A, and by all assets in A if they are homogenous
(and in particular if there is only one opportunity). It is not satisfied when 

2
 is large

relative to a weighted average of this variable across assets, and in that case the volatility due

to 

 decreases with arbitrageur wealth. The intuition is that an increase in wealth leads to
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an increase in arbitrageur positions (implying larger volatility), but to a reduction in the wealth-

sensitivity of risk premia (implying smaller volatility). When  is large, arbitrageurs are invested

heavily in opportunity (−), and the second effect dominates because the shock  has a large

impact on wealth.15

4.3.3 Correlations

We now turn to asset correlations which again differ from the unconstrained case. First, some assets

have uncorrelated fundamentals, i.e., dividends and supply. In our model, these are assets not in the

same pair. Absent constraints or segmentation, these assets’ returns would be uncorrelated. With

constraints however they are correlated because arbitrageur wealth is a common factor affecting

all asset returns. Second, assets in the same pair have correlated fundamentals but their returns’

correlation is below that absent constraints. We show that correlations depend on arbitrageur

wealth in a non-trivial way.

Proposition 8 Consider ( 0) ∈ A2,  6= 0. There exists   0 going to zero when {     }∈A
go to zero such that

• If   + , the correlation between assets  and 0 decreases with arbitrageur wealth .

• If  ≤   − , the component of the correlation between assets  and 0 due to supply

shocks 

 increases with arbitrageur wealth , and that due to the fundamental shock



,  ∈ A, increases if (54) is satisfied.

• The opposite holds for the correlation between assets  and −, and for that between assets 
and −0.

The intuition is as follows. Assume that (as for riskless arbitrage) arbitrageurs long all oppor-

tunities (  0 for all  ∈ A), and risk premia decrease with arbitrageur wealth.

Consider first two assets  6= 0 that arbitrageurs long. For such assets, correlation is positive

despite their fundamentals’ independence. For high levels of wealth, as wealth increases, their cor-

relation converges to that absent constraint, i.e., zero. Things are different for low levels of wealth.

Indeed, a given increase in arbitrageur wealth translates into a larger increase in arbitrageurs’ po-

sitions, and hence in their exposure to supply shocks. Since arbitrageur wealth is a factor common

to all assets, this increases the correlation between  and 0. Hence, the correlation between  and

0 tends to be hump-shaped or decreasing in wealth.
15Condition (54) is not needed for supply shocks because the direct effect of 


 is through arbitrageurs’ position

in opportunity (−), while that of 
 concerns all opportunities.
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Consider now assets  and −0. For such assets, correlation is negative despite their fundamen-
tals’ independence. Because fundamental and supply shocks have opposite effects on assets 0 and

−0, the correlation between assets  and −0 tends to be inverse U-shaped or increasing.

Finally, consider assets  and−. These assets tend to be less correlated than absent constraints.
Because fundamental and supply shocks have opposite effects on assets  and −, the correlation
between assets  and − tends to be inverse hump-shaped or increasing.

One interesting aspect of these results is that the effect of a change in arbitrageur wealth on

correlations is not uniform across asset pairs or across wealth levels. For instance, a reduction

in arbitrage capital (e.g., as during a financial crisis) does not necessary lead to an increase in

correlations across all assets, a phenomenon often viewed as contagion, and this for two distinct

reasons. First, arbitrageurs’ activity tends to bring the prices of assets with correlated fundamentals

(e.g.,  and −) in line with each other. When they are poorer, they may be able to perform that

role, and the correlation between such assets decreases. Second, for low levels of arbitrage wealth,

arbitrageurs hold small positions and this weakens the transmission of shocks through arbitrageur

wealth, reducing the correlation between assets with uncorrelated fundamentals.

4.3.4 Arbitrage Positions

We next examine how arbitrageur positions depend on their wealth and on the risk of investment

opportunities. When arbitrageurs long all opportunities (i.e.,   0 for  ∈ A), Eq. (46) and
Proposition 5 imply that for all  ∈ A, the expected excess return from opportunity (−) is

Φ = Π +
( − − )

2
 (55)

The first term is a compensation for tying up capital as collateral. The risk-adjusted return on

collateral Π is positive when the financial constraint binds and zero when it is slack. The second

term is a compensation for risk. It is positive because both fundamental and supply shocks induce

positive correlation between the return on opportunity (−) and arbitrageur wealth. Indeed, a
positive fundamental shock 


 to  ∈ A raises arbitrageur wealth, leading to lower risk premia

and higher returns from all opportunities. A positive supply shock 
 to  ∈ A raises premia,

leading to lower arbitrageur wealth and lower returns from all opportunities.

Lemma 4 The financial constraint becomes slack at a lower level of wealth than under riskless

arbitrage. More precisely, if {     }∈A are small, financial constraint (9) holds as an equality
if and only if  ≤ − , where   0.
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The intuition is as follows. Contrary to the riskfree arbitrage case, aggregate risk is not zero.

Hence optimal risk sharing does not involve full insurance for outside investors. Said differently,

because arbitrageurs require positive compensation for risk from each opportunity, they do not

drive expected excess returns down to zero even when they have enough wealth to do so.

Proposition 9 For {     }∈A small, consider ( 0) ∈ A2 such that (   ) = (0  0  0  0).

• If   0 and 

 = 


0, changes in arbitrageur wealth impact more strongly their position

in opportunity (−) than (0−0).

• If  = 0 and 

  


0, changes in arbitrageur wealth impact more strongly their position

in opportunity (−) than (0−0) when    +  for   0 that converges to zero when

{     }∈A go to zero.

When arbitrageurs are unconstrained, their positions are limited only by risk aversion. If arbi-

trageur wealth decreases within that region, risk-aversion increases (the coefficient of absolute risk

aversion is 1) and returns become more volatile (Proposition 7). These mutually-reinforcing

effects induce arbitrageurs to scale down their positions, especially in opportunities that involve

more risk. These are the opportunities with high collateral requirements (high ) and high funda-

mental risk (high 

 ). Note that opportunities with high collateral requirements are more affected

not because the opportunity cost of collateral increases, but because their returns are more volatile.

Consider next the region where the financial constraint binds. Under riskless arbitrage, arbi-

trageurs scale down more their positions in opportunities with high collateral requirements (Corol-

lary 7). Under risky arbitrage, arbitrageurs are also concerned about the risk of each opportunity,

but the variation of this effect with wealth is ambiguous. On the one hand, when wealth decreases,

arbitrageurs become more risk-averse. On the other hand, return volatility can decrease (Proposi-

tion 7). As a consequence, arbitrageurs can scale down their positions less in riskier opportunities.

For small arbitrage risk, the effect of  is unambiguous (same as under riskless arbitrage), but the

effect of 

 is ambiguous.

5 Conclusion

This paper develops a framework to examine the relation between intermediary capital, financial

market liquidity and asset prices. Its main features are as follows. First, arbitrageurs are sophisti-

cated investors with better investment opportunities than other investors, but they face financial
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constraints. Second, ours is a dynamic general equilibrium model capturing the dynamic interaction

between arbitrage and arbitrage capital. Third, arbitrageurs face multiple arbitrage opportunities

with different characteristics, across which they must allocate their scarce capital.

Our main results are...

Our analysis has left aside a number of important questions which we intend to address in

future research.

Modelling: Endogenous constraints/segmentation.

Economics: Imperfect competition; Entry; Integration/Segmentation.
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Appendix

A Riskless Arbitrage

Proof of Proposition 1 and Corollary 1: We solve a given arbitrageur ’s problem P using
dynamic programming. We distinguish between arbitrageur ’s wealth ̂, and the arbitrageurs’

total wealth . In equilibrium ̂ = , but distinguishing ̂ from  is important as 

influences prices while arbitrageur  can affect only ̂. We denote {̂}∈A arbitrageur ’s

positions and ̂ his consumption to distinguish them from the arbitrageurs’ total positions {}∈A
and consumption . We conjecture the value function

 (̂) =
log(̂)


+ () (A.1)

For riskless arbitrage, (̂) are deterministic, and the Bellman equation is

max
̂̂

"
log(̂) + 

̂

Ã
̂ + 2

X
∈A

̂Φ − ̂

!
+  − 

#
= 0 (A.2)

where  denotes the drift of . The first-order condition with respect to ̂ yields ̂ = ̂.

Optimizing over {̂}∈A amounts to maximizing
P

∈A ̂Φ subject to financial constraint (20).

Since Φ ≥ 0 for  ∈ A, the first-order condition yields the policy in the proposition. The maximum

value of 2
P

∈A ̂Φ is ̂max∈A
³
Φ


´
. Substituting into (A.2), the terms in ̂ cancel out.

Setting the remaining terms to zero determines the function ().
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Proof of Lemma 1: Eqs. (10) and (18) imply that

Φ = 
2


µ
 − 



¶
 (A.3)

For Φ = Π and   0, (A.3) implies 
2
  Π. Solving (A.3) for  yields (22).

Proof of Lemma 2: From Corollary 1, ∀ ∈ I,  = 0 or Φ = Π, which implies Φ =

Π. Substituting together with  =  into (19) and yields

 =

"
( − ) + 2Π

X
∈A



#
 (A.4)

Eq. (23) follows from (20) and (A.4) by noting that when (20) is slack, Π = 0.

For (20) to be slack, arbitrageurs must be able to hold  =  for all  ∈ I, which requires
 ≥ 2

P
∈A ≡ . This also implies  = − for all  ∈ I, and therefore Φ = 0 from

(19).   0 for all  ∈ A and Φ = 0 implies Π = 0 (Corollary 1).

If   , ∃ ∈ A such that   , which implies    and Φ  0 (from Eq.

(19)). This implies Π  0 (Corollary 1). Moreover if arbitrageurs invest in all opportunities, their

position  in each of them is given by (22). Substituting into (20) (which holds as an equality)

yields

 = 2
X
∈A



µ
 − Π


2


¶
= − Π


 (A.5)

which implies (24).

Proof of Proposition 2: We first determine  for  ≥  such that   . Using (24), we can

write (23) as

 = (−) (A.6)

To integrate (A.6), we note that





µ


−

−

¶
=

−

(−)2

∙



− (−)

¸
= 0

where the second step follows from (A.6). Therefore, for   ,


−

−
=


−

−

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Solving for , we find (27).

We next determine  for  ≥  such that  ≥ . If for   ,  is in the unconstrained

region, then it is given by (28), obtained by integrating (23). The boundary  =  is reached

for  = . For   ,  is given by (27) by setting  =  and  =. This is (28).

Proof of Proposition 3: Eq. (33) stems from (27) and (32), and Eq. (34) from (28)-(30) and

(32).

Proof of Proposition 4: From Lemma 1 and Lemma 2.

Proof of Corollary 2: Eq. (33) implies that in the constrained region is




= −

Z ∞

0

£


 ( − 1) + 1

¤2 − (A.7)

Eq. (34) implies that in the unconstrained region is




= − 

( − )

µ




¶ 
−

Z ∞

0

"
 − 





 ( − 1) + 1

#
− (A.8)

In both cases,  is negative and increases as  increases. To show strict convexity, we

also need to show that  is continuous at  =. Integrating (A.7) by parts, we find




=

"




−


 ( − 1) + 1

#∞
0

+




Z ∞

0

−


 ( − 1) + 1



= −



Ã
1−

Z ∞

0

−


 ( − 1) + 1



!
 (A.9)

and therefore,





¯̄̄̄
=

−


= −


+





Z ∞

0

−


 ( − 1) + 1

 (A.10)

Moreover, (A.8) implies that





¯̄̄̄
=

+


= −

 − 

Z ∞

0

"
1− 



 ( − 1) + 1

#
−

= −

 − 

Z ∞

0

"
1− 


− 1− 





 ( − 1) + 1

#
− (A.11)

Using the definition of  (Eq. (25)), we find that (A.11) coincides with (A.10).
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Proof of Corollary 3: The variable  affects  through  and  ≡  −  + . Since

 is a positive constant, it suffices to show the corollary for  rather than  .

To determine the sign of the cross-effect, we examine how the effect of  on  depends on

. Consider first the constrained region. Since  is increasing in, (A.9) implies that 

is decreasing in , i.e., 
2  0. Consider next the unconstrained region. Eq. (A.8)

implies that 2  0 if





"
 − 





 ( − 1) + 1

#
 0 (A.12)

For a general value of ,

− 




 ( − 1) + 1

=− 


−  − 




 ( − 1) + 1

=
 − 


−  − 




 ( − 1) + 1

 (A.13)

Therefore, for  =,

 − 




 ( − 1) + 1

=
 − 


−  − 



1


 ( − 1) + 1



This expression is increasing in  since  is increasing in . Thus, in both the constrained and

unconstrained regions, 2 = 2  0. To conclude that the effect of 

on  is more negative the larger  is, we also need to show that  is continuous at

 =. Eq. (33) implies that in the constrained region




= 

Z ∞

0





"
 − 





 ( − 1) + 1

#
− (A.14)

Eq. (34) implies that in the unconstrained region




=



( − )

µ




¶ 
−

Z ∞

0

"
 − 





 ( − 1) + 1

#
−

+

µ




¶ 
−

Z ∞

0





"
 − 





 ( − 1) + 1

#
− (A.15)
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Eqs. (A.14) and (A.15) imply that





¯̄̄̄
=

−


=




¯̄̄̄
=

+


⇔ 0 =


 − 

Z ∞

0

"
1− 



 ( − 1) + 1

#
−−

Z ∞

0

£


 ( − 1) + 1

¤2 −
⇔ 



¯̄̄̄
=

−


=




¯̄̄̄
=

+




which holds.

We next show that   0. Eq. (A.13) implies that   0 in the constrained

region if the function

 :  −→  − 




 ( − 1) + 1

is decreasing in . Since the denominator is increasing in , () is decreasing if   .

Since 2  0, inequality   0 holds also if   . Finally, (A.12) and

(A.15) imply   0 in the unconstrained region.

Proof of Corollaries 4, 5 and 6: The first result follows from (33) and (34) by observing that

the only asset-specific term in each equation is . Using the same observation, we can derive the

second result from (A.7) and (A.8), and the third result from (A.14) and (A.15).

Proof of Corollary 7: Follows from Proposition 4.

B Risky Arbitrage

Proof of Proposition 5: We proceed as in the proof of Proposition 1, conjecturing the value

function (A.1). The Bellman equation is

max
̂̂

(
log(̂) + 

̂

Ã
̂ + 2

X
∈A

̂Φ − ̂

!

+
1

2

̂̂

⎡⎣X
∈A

Ã
̂


 −

X
∈A

̂



!2
+
X
∈A

ÃX
∈A

̂



!2⎤⎦

+ +
1

2


⎡⎣X
∈A

³




´2
+
X
∈A

¡


¢2⎤⎦− 

⎫⎬⎭ = 0 (B.1)
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where  denotes the drift of . The first-order condition with respect to ̂ yields ̂ = ̂.

Optimization over {̂}∈A amounts to maximizing

X
∈A

Φ − 1

2̂

⎡⎣X
∈A

Ã
̂


 −

X
∈A

̂



!2
+
X
∈A

ÃX
∈A

̂



!2⎤⎦ (B.2)

subject to the financial constraint (9). The first-order condition yields the policy in the proposition.

The policy {̂}∈A and the maximum value of (B.2) are linear in ̂. Substituting into (B.1), the

terms in ̂ cancel. Setting the remaining terms to zero, determines the function ().

Proof of Lemma 3: Substituting 

 from (48) into (45) and solving for 


 , we find (49).

Substituting 

 from (48) into (45) and solving for  , we find (52).

Proof of Proposition 6: When {     }∈A are small, the highest-order term in (52) is


0
 ≡ −

0



2
P

∈A 0
0




1 + 2
P

∈A 0
0


+
0


  (B.3)

where (0 
0
) denote the functions ( ) evaluated under riskless arbitrage at the point

( {}∈A). The proposition will follow if we show that 0 is positive, decreasing in  for

  , and increasing in  for  ≤  .

When   , 
0
 = , and the denominator in (B.3) is equal to

1 + 2
X
∈A


0


= 1 +

2
P

∈A



Ã
−1 +

Z ∞

0

−


 ( − 1) + 1



!

= 1− 


+





Z ∞

0

−


 ( − 1) + 1

  0 (B.4)

where the first step follows from (A.9), and the second from  ≡ − ( − )  0. The variable


0
 is positive and decreasing in  because (B.4) is positive,

0


is positive and decreasing in

 (Corollary 3), and
0


is negative and increasing in  (Corollary 2).

When   , (A.9) implies that

0


= −


+





Z ∞

0

−


 ( − 1) + 1

 (B.5)
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and (A.13) and (A.14) imply that

0


= −

Z ∞

0





"
 − 




 ( − 1) + 1

#
− (B.6)

Moreover, since {0}∈A satisfy the financial constraint (20), (A.9) implies that

1 + 2
X
∈A

0
0


= 1 +

2
P

∈A
0




Ã
−1 +

Z ∞

0

−


 ( − 1) + 1



!

=

Z ∞

0

−


 ( − 1) + 1

 (B.7)

and (A.13) and (A.14) imply that

2
X
∈A

0
0


=

Ã
2
X
∈A


0


!


Z ∞

0





"
 − 





 ( − 1) + 1

#
−

= −

Z ∞

0





"
 − 




 ( − 1) + 1

#
− (B.8)

Substituting (B.5)-(B.8) into (B.3), we find


0
 = −




R∞
0




∙
−




(−1)+1

¸
−R∞

0
−



(−1)+1

= 



⎧⎪⎪⎨⎪⎪⎩
1


+

R∞
0

(−
 )



2
(−+1)

[(−1)+1]2
−R∞

0
−



(−1)+1

⎫⎪⎪⎬⎪⎪⎭  (B.9)

where the second step follows from  ≡  −  +. Since the function

 −→
¡
 − 



¢

2


¡
 −  + 1

¢£


 ( − 1) + 1

¤2
is positive for    and increasing in  for   (2), and the function

 −→
Z ∞

0

−


 ( − 1) + 1



is positive and decreasing in , 
0
 is positive and increasing in  for  ≤  .

37



Proof of Proposition 7: The loading 

 for ( ) ∈ A is given by (50). When {     }∈A

are small, the highest-order term in (50) is


0
 ≡

0



20



1 + 2
P

∈A 0
0


 (B.10)

The proposition will follow from (42) and the properties of 
0
 shown in the proof of Proposition

6, if we show that 
0
 is negative, increasing in  for   , and decreasing in  for

   and  satisfying (54).

When   , 
0
 =  and the denominator in (B.10) is equal to (B.4). Since 


 , 

0
,

and (B.4) are positive, and
0


is negative and increasing in , 
0
 is negative and increasing

in . When   ,

0 = 

Ã
 − Π

0



2


!
= 

"
 − ( −)


2


#
 (B.11)

where the first step follows from (22) and the second from (24). Substituting (B.5), (B.7) and

(B.11) into (B.10), we find


0
 = −2




⎡⎣ − 


2



+




2


⎤⎦⎡⎣ 1R∞
0

−


(−1)+1

− 1
⎤⎦  (B.12)

The first square bracket is positive since 0  0, and increases with  for  satisfying (54). Since

the second square bracket is positive and increasing in , 
0
 is negative and decreasing in .

Proof of Proposition 8: The correlation between assets ( 0) ∈ A2 is

0 ≡

³


 − 




´


0 + 


0

³


00 − 


0

´
+
P

∈A{0} 




0 +

P
∈A 





0



0

 (B.13)

When {     }∈A are small, the highest-order term in (B.13) is

³

0
 − 




´

0
0 + 

0
0

³

0
00 − 


0

´
+
P

∈A{0} 
0


0
0 +

P
∈A 

0


0
0

0
 (B.14)

The properties of 0 follow from (B.14) and the properties of (
0
 

0
) shown in the proofs of

Propositions 6 and 7. The properties of −0 follow from −0 = −0, which is implied from
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symmetry. To show the properties of −, we note that symmetry implies that

− =
2 −

³


 − 




´2
−P∈A{}

³




´2
−P∈A

³




´2
³


´2 

When {     }∈A are small, − is close to one. Using (42), we find that the highest-order
term in 1− − is

2

∙³


 − 

0


´2
+
P

∈A{}
³

0


´2
+
P

∈A
³

0


´2¸
2

 (B.15)

The comparative statics of (B.15) are the same as for (B.14). Therefore, the properties of −

are opposite to those of 0.

Proof of Lemma 4: When {     }∈A are small, arbitrageurs long all opportunities and their
first-order condition is (55). Combining with (43) and using (46), we find

 = 

⎡⎢⎣ − Ψ +Π



³


´2
⎤⎥⎦  (B.16)

where

Ψ ≡ 1



⎡⎣( − 

)


 −

X
∈A{}






 −

X
∈A








⎤⎦ 
Multiplying (B.16) by  and summing over  ∈ A, we find that the financial constraint (9) holds
as an equality if and only if

 = − 2
X
∈A

 (Ψ +Π)



³


´2  (B.17)

For small {     }∈A, the highest-order term in Ψ is

Ψ0 ≡
1



⎡⎣( − 
0
)

0
 −

X
∈A{}


0


0
 −

X
∈A


0


0


⎤⎦  (B.18)

where


0
 ≡ 20




1 + 2
P

∈A 0
0


and 0
 ≡ −

2
P

∈A 0
0




1 + 2
P

∈A 0
0


(B.19)
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are the highest-order terms in (

   ), respectively. Since 

0
  0, 

0
  0, 

0
  0 and

0
  0, Ψ0  0. Lemma 4 follows from (B.17), Π ≥ 0 and Ψ0  0.

Proof of Proposition 9: In the region where arbitrageurs are unconstrained, Π = 0. Eq. (B.16)

implies that when {     }∈A are small, the two highest-order terms in  are

1 ≡ 

Ã
 −

Ψ0


2


!
 (B.20)

Since 
0
 and 0

 are negative and increasing in , and 
0
 and 

0
 are positive and

decreasing in , (B.18) implies that Ψ
0
 is decreasing in , and therefore, 

1
 is increasing. Eq.

(B.20) implies that

1 − 10 =


2

¡
Ψ00 −Ψ0

¢
 (B.21)

where (   ) ≡ (   ) = (0  0  0  0). Noting that 0 = 000 and 0 =

, and using (B.3), (B.10), (B.18), (B.19) and (B.21), we find

1−10 =


2

⎧⎪⎪⎨⎪⎪⎩
2

∙³


0

´2
−
³




´2¸
1 + 2

P
∈A 

0


+

µ
1− 0



¶⎛⎝X
∈A


0


0
 +

X
∈A


0


0


⎞⎠
⎫⎪⎪⎬⎪⎪⎭ 

(B.22)

If   0 and 

 = 


0 , the first term in the curly bracket is zero. Since the second term is

negative and increasing in , 
1
 − 10 is increasing in . If  = 0 and 


  


0 , the second

term in the curly bracket is zero. Since the first term is negative and increasing in , 
1
 − 10

is increasing in . In both cases, 
1
  10  0, i.e., changes in arbitrageur wealth

impact more strongly their position in opportunity (−) than (0−0).

In the region where arbitrageurs are constrained, Π  0. Eq. (B.16) implies that when

{     }∈A are small, the two highest-order terms in  are

1 = 

⎧⎪⎨⎪⎩ − Ψ +Π


2


⎡⎢⎣1 +
³


´2
− 2

2

⎤⎥⎦
⎫⎪⎬⎪⎭  (B.23)

The comparative statics with respect to  follow by considering the highest-order term

0 = 

µ
 − Π


2


¶

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i.e., as in the case of riskless arbitrage. (The ambiguous comparative statics with respect to 



follow by considering the term in the next order.)
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